596 research outputs found

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    k-colored kernels

    Get PDF
    We study kk-colored kernels in mm-colored digraphs. An mm-colored digraph DD has kk-colored kernel if there exists a subset KK of its vertices such that (i) from every vertex vKv\notin K there exists an at most kk-colored directed path from vv to a vertex of KK and (ii) for every u,vKu,v\in K there does not exist an at most kk-colored directed path between them. In this paper, we prove that for every integer k2k\geq 2 there exists a (k+1)% (k+1)-colored digraph DD without kk-colored kernel and if every directed cycle of an mm-colored digraph is monochromatic, then it has a kk-colored kernel for every positive integer k.k. We obtain the following results for some generalizations of tournaments: (i) mm-colored quasi-transitive and 3-quasi-transitive digraphs have a kk% -colored kernel for every k3k\geq 3 and k4,k\geq 4, respectively (we conjecture that every mm-colored ll-quasi-transitive digraph has a kk% -colored kernel for every kl+1)k\geq l+1), and (ii) mm-colored locally in-tournament (out-tournament, respectively) digraphs have a kk-colored kernel provided that every arc belongs to a directed cycle and every directed cycle is at most kk-colored

    Nondeterministic graph property testing

    Full text link
    A property of finite graphs is called nondeterministically testable if it has a "certificate" such that once the certificate is specified, its correctness can be verified by random local testing. In this paper we study certificates that consist of one or more unary and/or binary relations on the nodes, in the case of dense graphs. Using the theory of graph limits, we prove that nondeterministically testable properties are also deterministically testable.Comment: Version 2: 11 pages; we allow orientation in the certificate, describe new application
    corecore