13,179 research outputs found

    The Onset of Phase Transitions in Condensed Matter and Relativistic QFT

    Full text link
    Kibble and Zurek have provided a unifying causal picture for the appearance of topological defects like cosmic strings or vortices at the onset of phase transitions in relativistic QFT and condensed matter systems respectively. There is no direct experimental evidence in QFT, but in condensed matter the predictions are largely, but not wholly, supported in superfluid experiments on liquid helium. We provide an alternative picture for the initial appearance of strings/vortices that is commensurate with all the experimental evidence from condensed matter and consider some of its implications for QFT.Comment: 37 pages, to be published in Condensed Matter Physics, 200

    New Multicritical Random Matrix Ensembles

    Get PDF
    In this paper we construct a class of random matrix ensembles labelled by a real parameter α(0,1)\alpha \in (0,1), whose eigenvalue density near zero behaves like xα|x|^\alpha. The eigenvalue spacing near zero scales like 1/N1/(1+α)1/N^{1/(1+\alpha)} and thus these ensembles are representatives of a {\em continous} series of new universality classes. We study these ensembles both in the bulk and on the scale of eigenvalue spacing. In the former case we obtain formulas for the eigenvalue density, while in the latter case we obtain approximate expressions for the scaling functions in the microscopic limit using a very simple approximate method based on the location of zeroes of orthogonal polynomials.Comment: 15 pages, 3 figures; v2: version to appear in Nucl. Phys.

    Structure Preserving Discretizations of the Liouville Equation and their Numerical Tests

    Full text link
    The main purpose of this article is to show how symmetry structures in partial differential equations can be preserved in a discrete world and reflected in difference schemes. Three different structure preserving discretizations of the Liouville equation are presented and then used to solve specific boundary value problems. The results are compared with exact solutions satisfying the same boundary conditions. All three discretizations are on four point lattices. One preserves linearizability of the equation, another the infinite-dimensional symmetry group as higher symmetries, the third one preserves the maximal finite-dimensional subgroup of the symmetry group as point symmetries. A 9-point invariant scheme that gives a better approximation of the equation, but significantly worse numerical results for solutions is presented and discussed

    Cauchy Biorthogonal Polynomials

    Full text link
    The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite-Pade' approximation scheme. Associated to any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeroes are simple and positive. We then specialize the kernel to the Cauchy kernel 1/{x+y} and show that the ensuing biorthogonal polynomials solve a four-term recurrence relation, have relevant Christoffel-Darboux generalized formulae, and their zeroes are interlaced. In addition, these polynomial solve a combination of Hermite-Pade' approximation problems to a Nikishin system of order 2. The motivation arises from two distant areas; on one side, in the study of the inverse spectral problem for the peakon solution of the Degasperis-Procesi equation; on the other side, from a random matrix model involving two positive definite random Hermitian matrices. Finally, we show how to characterize these polynomials in term of a Riemann-Hilbert problem.Comment: 38 pages, partially replaces arXiv:0711.408
    corecore