3,582 research outputs found

    Uniqueness of radial solutions for the fractional Laplacian

    Get PDF
    We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (Δ)s(-\Delta)^s with s(0,1)s \in (0,1) for any space dimensions N1N \geq 1. By extending a monotonicity formula found by Cabre and Sire \cite{CaSi-10}, we show that the linear equation (Δ)su+Vu=0(-\Delta)^s u+ Vu = 0 in RN\mathbb{R}^N has at most one radial and bounded solution vanishing at infinity, provided that the potential VV is a radial and non-decreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schr\"odinger operator H=(Δ)s+VH=(-\Delta)^s + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half-space R+N+1\mathbb{R}^{N+1}_+, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation (Δ)sQ+QQαQ=0(-\Delta)^s Q + Q - |Q|^{\alpha} Q = 0 in RN\mathbb{R}^N for arbitrary space dimensions N1N \geq 1 and all admissible exponents α>0\alpha >0. This generalizes the nondegeneracy and uniqueness result for dimension N=1 recently obtained by the first two authors in \cite{FrLe-10} and, in particular, the uniqueness result for solitary waves of the Benjamin--Ono equation found by Amick and Toland \cite{AmTo-91}.Comment: 38 pages; revised version; various typos corrected; proof of Lemma 8.1 corrected; discussion of case \kappa_* =1 in the proof of Theorem 2 corrected with new Lemma A.2; accepted for publication in Comm. Pure. Appl. Mat

    Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths

    Full text link
    We consider differential equations driven by rough paths and study the regularity of the laws and their long time behavior. In particular, we focus on the case when the driving noise is a rough path valued fractional Brownian motion with Hurst parameter H(13,12]H\in(\frac{1}{3},\frac{1}{2}]. Our contribution in this work is twofold. First, when the driving vector fields satisfy H\"{o}rmander's celebrated "Lie bracket condition," we derive explicit quantitative bounds on the inverse of the Malliavin matrix. En route to this, we provide a novel "deterministic" version of Norris's lemma for differential equations driven by rough paths. This result, with the added assumption that the linearized equation has moments, will then yield that the transition laws have a smooth density with respect to Lebesgue measure. Our second main result states that under H\"{o}rmander's condition, the solutions to rough differential equations driven by fractional Brownian motion with H(13,12]H\in(\frac{1}{3},\frac{1}{2}] enjoy a suitable version of the strong Feller property. Under a standard controllability condition, this implies that they admit a unique stationary solution that is physical in the sense that it does not "look into the future."Comment: Published in at http://dx.doi.org/10.1214/12-AOP777 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Partial Differential Equations

    Get PDF
    The workshop dealt with partial differential equations in geometry and technical applications. The main topics were the combination of nonlinear partial differential equations and geometric problems, and fourth order equations in conformal geometry

    An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness

    Get PDF
    This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results

    Diffusion in multiscale spacetimes

    Get PDF
    We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These results are partly based on the literature in probability and percolation theory but their physical interpretation here is different since they apply to quantum spacetime itself. The case of multiscale (in particular, multifractal) spacetimes is then considered through a number of examples and the most general spectral-dimension profile of multifractional spaces is constructed.Comment: 23 pages, 5 figures. v2: discussion improved, typos corrected, references adde

    The Theory of Quasiconformal Mappings in Higher Dimensions, I

    Full text link
    We present a survey of the many and various elements of the modern higher-dimensional theory of quasiconformal mappings and their wide and varied application. It is unified (and limited) by the theme of the author's interests. Thus we will discuss the basic theory as it developed in the 1960s in the early work of F.W. Gehring and Yu G. Reshetnyak and subsequently explore the connections with geometric function theory, nonlinear partial differential equations, differential and geometric topology and dynamics as they ensued over the following decades. We give few proofs as we try to outline the major results of the area and current research themes. We do not strive to present these results in maximal generality, as to achieve this considerable technical knowledge would be necessary of the reader. We have tried to give a feel of where the area is, what are the central ideas and problems and where are the major current interactions with researchers in other areas. We have also added a bit of history here and there. We have not been able to cover the many recent advances generalising the theory to mappings of finite distortion and to degenerate elliptic Beltrami systems which connects the theory closely with the calculus of variations and nonlinear elasticity, nonlinear Hodge theory and related areas, although the reader may see shadows of this aspect in parts
    corecore