7,832 research outputs found

    Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling

    Full text link
    Small lattices of NN nearest neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied, and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time-lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bi-stable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but non-symmetric and phase-shifted. For an intermediate range of time-lags inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.Comment: accepted by Phys.Rev.

    Optimizing periodicity and polymodality in noise-induced genetic oscillators

    Get PDF
    Many cellular functions are based on the rhythmic organization of biological processes into self-repeating cascades of events. Some of these periodic processes, such as the cell cycles of several species, exhibit conspicuous irregularities in the form of period skippings, which lead to polymodal distributions of cycle lengths. A recently proposed mechanism that accounts for this quantized behavior is the stabilization of a Hopf-unstable state by molecular noise. Here we investigate the effect of varying noise in a model system, namely an excitable activator-repressor genetic circuit, that displays this noise-induced stabilization effect. Our results show that an optimal noise level enhances the regularity (coherence) of the cycles, in a form of coherence resonance. Similar noise levels also optimize the multimodal nature of the cycle lengths. Together, these results illustrate how molecular noise within a minimal gene regulatory motif confers robust generation of polymodal patterns of periodicity.Comment: 9 pages, 6 figure

    Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system

    Full text link
    We both show experimentally and numerically that the time scales separation introduced by long range activation can induce oscillations and excitability in nonequilibrium reaction-diffusion systems that would otherwise only exhibit bistability. Namely, we show that the Chlorite-Tetrathionate reaction, where autocatalytic species diffuses faster than the substrates, the spatial bistability domain in the nonequilibrium phase diagram is extended with oscillatory and excitability domains. A simple model and a more realistic model qualitatively account for the observed behavior. The latter model provides quantitative agreement with the experiments.Comment: 19 pages + 9 figure

    A comparison of methods to determine neuronal phase-response curves

    Get PDF
    The phase-response curve (PRC) is an important tool to determine the excitability type of single neurons which reveals consequences for their synchronizing properties. We review five methods to compute the PRC from both model data and experimental data and compare the numerically obtained results from each method. The main difference between the methods lies in the reliability which is influenced by the fluctuations in the spiking data and the number of spikes available for analysis. We discuss the significance of our results and provide guidelines to choose the best method based on the available data.Comment: PDFLatex, 16 pages, 7 figures

    Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible?

    Full text link
    We present a bifurcation analysis of a normal form for travelling waves in one-dimensional excitable media. The normal form which has been recently proposed on phenomenological grounds is given in form of a differential delay equation. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with a saddle-node in a Bogdanov-Takens point, and a symmetry breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf bifurcation for the propagation of a single pulse in a ring by means of a center manifold reduction, and for a wave train by means of a multiscale analysis leading to a real Ginzburg-Landau equation as the corresponding amplitude equation. Both, the center manifold reduction and the multiscale analysis show that the Hopf bifurcation is always subcritical independent of the parameters. This may have links to cardiac alternans which have so far been believed to be stable oscillations emanating from a supercritical bifurcation. We discuss the implications for cardiac alternans and revisit the instability in some excitable media where the oscillations had been believed to be stable. In particular, we show that our condition for the onset of the Hopf bifurcation coincides with the well known restitution condition for cardiac alternans.Comment: to be published in Chao

    Chaotic Observer-based Synchronization Under Information Constraints

    Full text link
    Limit possibilities of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multi-dimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference
    corecore