1,085 research outputs found

    Network Optimization on Partitioned Pairs of Points

    Get PDF
    Given n pairs of points, S = {{p_1, q_1}, {p_2, q_2}, ..., {p_n, q_n}}, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases

    A Parallel Application for Tree Selection in the Steiner Minimal Tree Problem

    Get PDF
    A classic optimization problem in mathematics is the problem of determining the shortest possible length for a network of points. One of these problems, that remains relevant even today, is the Steiner Minimal Tree problem. This problem is focused on finding a connected graph for a cloud of points that minimizes the overall distance of the tree. This problem has applications in fields such as telecommunications, determining where to geographically place hubs such that the total length of run cabling is minimized, and for a special case of the problem, circuit design

    Service in Your Neighborhood: Fairness in Center Location

    Get PDF
    When selecting locations for a set of centers, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given k centers to locate and a population of size n, we define the "neighborhood radius" of an individual i as the minimum radius of a ball centered at i that contains at least n/k individuals. Our objective is to ensure that each individual has a center that is within at most a small constant factor of her neighborhood radius. We present several theoretical results: We show that optimizing this factor is NP-hard; we give an approximation algorithm that guarantees a factor of at most 2 in all metric spaces; and we prove matching lower bounds in some metric spaces. We apply a variant of this algorithm to real-world address data, showing that it is quite different from standard clustering algorithms and outperforms them on our objective function and balances the load between centers more evenly

    Algorithms for the power-p Steiner tree problem in the Euclidean plane

    Get PDF
    We study the problem of constructing minimum power-pp Euclidean kk-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most kk additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of pp (where p≥1p\geq 1), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio κ\kappa of the beaded-MST heuristic satisfies 3p−1(1+21−p)≤κ≤3(2p−1)\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1}). We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the p=2p=2 case
    • …
    corecore