9,670 research outputs found

    When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

    Get PDF
    The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of 9 improved covariance estimation procedures by using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between estimation period T and number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than the one obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary when short selling is not allowed and T>N, the considered methods are unable to outperform the sample covariance in terms of realized risk but can give much more diversified portfolios than the one obtained with the sample covariance. When T<N the use of the sample covariance matrix and of the pseudoinverse gives portfolios with very poor performance.Comment: 30 page

    Probabilistic performance estimators for computational chemistry methods: the empirical cumulative distribution function of absolute errors

    Full text link
    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely (1) the probability for a new calculation to have an absolute error below a chosen threshold, and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.Comment: Supplementary material: https://github.com/ppernot/ECDF

    Reliable inference for complex models by discriminative composite likelihood estimation

    Full text link
    Composite likelihood estimation has an important role in the analysis of multivariate data for which the full likelihood function is intractable. An important issue in composite likelihood inference is the choice of the weights associated with lower-dimensional data sub-sets, since the presence of incompatible sub-models can deteriorate the accuracy of the resulting estimator. In this paper, we introduce a new approach for simultaneous parameter estimation by tilting, or re-weighting, each sub-likelihood component called discriminative composite likelihood estimation (D-McLE). The data-adaptive weights maximize the composite likelihood function, subject to moving a given distance from uniform weights; then, the resulting weights can be used to rank lower-dimensional likelihoods in terms of their influence in the composite likelihood function. Our analytical findings and numerical examples support the stability of the resulting estimator compared to estimators constructed using standard composition strategies based on uniform weights. The properties of the new method are illustrated through simulated data and real spatial data on multivariate precipitation extremes.Comment: 29 pages, 4 figure

    Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes

    Full text link
    A functional risk curve gives the probability of an undesirable event as a function of the value of a critical parameter of a considered physical system. In several applicative situations, this curve is built using phenomenological numerical models which simulate complex physical phenomena. To avoid cpu-time expensive numerical models, we propose to use Gaussian process regression to build functional risk curves. An algorithm is given to provide confidence bounds due to this approximation. Two methods of global sensitivity analysis of the models' random input parameters on the functional risk curve are also studied. In particular, the PLI sensitivity indices allow to understand the effect of misjudgment on the input parameters' probability density functions

    Point and Interval Estimation on the Degree and the Angle of Polarization. A Bayesian approach

    Full text link
    Linear polarization measurements provide access to two quantities, the degree (DOP) and the angle of polarization (AOP). The aim of this work is to give a complete and concise overview of how to analyze polarimetric measurements. We review interval estimations for the DOP with a frequentist and a Bayesian approach. Point estimations for the DOP and interval estimations for the AOP are further investigated with a Bayesian approach to match observational needs. Point and interval estimations are calculated numerically for frequentist and Bayesian statistics. Monte Carlo simulations are performed to clarify the meaning of the calculations. Under observational conditions, the true DOP and AOP are unknown, so that classical statistical considerations - based on true values - are not directly usable. In contrast, Bayesian statistics handles unknown true values very well and produces point and interval estimations for DOP and AOP, directly. Using a Bayesian approach, we show how to choose DOP point estimations based on the measured signal-to-noise ratio. Interval estimations for the DOP show great differences in the limit of low signal-to-noise ratios between the classical and Bayesian approach. AOP interval estimations that are based on observational data are presented for the first time. All results are directly usable via plots and parametric fits.Comment: 11 pages, 14 figures, 3 table

    Robust Estimators in Generalized Pareto Models

    Full text link
    This paper deals with optimally-robust parameter estimation in generalized Pareto distributions (GPDs). These arise naturally in many situations where one is interested in the behavior of extreme events as motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have in mind is calculation of the regulatory capital required by Basel II for a bank to cover operational risk. In this context the tail behavior of the underlying distribution is crucial. This is where extreme value theory enters, suggesting to estimate these high quantiles parameterically using, e.g. GPDs. Robust statistics in this context offers procedures bounding the influence of single observations, so provides reliable inference in the presence of moderate deviations from the distributional model assumptions, respectively from the mechanisms underlying the PBHT.Comment: 26pages, 6 figure
    • …
    corecore