66,441 research outputs found

    Performance evaluation for communication systems with receive diversity and interference

    Get PDF
    Optimum combining (OC) is a well-known coherent detection technique used to combat fading and suppress cochannel interference. In this dissertation, expressions are developed to evaluate the error probability of OC for systems with multiple interferers and multiple receiving branches. Three approaches are taken to derive the expressions. The first one starts from the decision metrics of OC. It facilitates obtaining closed-form expressions for binary phase-shift keying modulation. The second approach utilizes the moment generating function of the output signal to interference plus noise ratio (SINR) and results in expressions for symbol and bit error probability for multiple phaseshift keying modulation. The third method uses the probability density function of the output SINR and arrives at expressions of symbol error probability for systems where the interferers may have unequal power levels. Throughout the derivation, it is assumed that the channels are independent Rayleigh fading channels. With these expressions, evaluating the error probability of OC is fast, easy and accurate. Two noncoherent detection schemes based on the multiple symbol differential detection (MSDD) technique are also developed for systems with multiple interferers and multiple receiving branches. The first MSDD scheme is developed for systems where the channel gain of the desired signal is unknown to the receiver, but the covariance matrix of the interference plus noise is known. The maximum-likelihood decision statistic is derived for the detector. The performance of MSDD is demonstrated by analysis and simulation. A sub-optimum decision feedback algorithm is presented to reduce the computation complexity of the MSDD decision statistic. This suboptimum algorithm achieves performance that is very close to that of the optimum algorithm. It can be shown that with an increasing observation interval, the performance of this kind of MSDD approaches that of OC with differential encoding. The second MSDD scheme is developed for the case in which the only required channel information is the channel gain of the interference. It is shown that when the interference power level is high, this MSDD technique can achieve good performance

    Differential modulation for two-way wireless communications: a perspective of differential network coding at the physical layer

    Get PDF
    This work considers two-way relay channels (TWRC), where two terminals transmit simultaneously to each other with the help of a relay node. For single antenna systems, we propose several new transmission schemes for both amplify-and-forward (AF) protocol and decode-and-forward (DF) protocol where the channel state information is not required. These new schemes are the counterpart of the traditional noncoherent detection or differential detection in point-to-point communications. Differential modulation design for TWRC is challenging because the received signal is a mixture of the signals from both source terminals. We derive maximum likelihood (ML) detectors for both AF and DF protocols, where the latter can be considered as performing differential network coding at the physical layer. As the exact ML detector is prohibitively complex, we propose several suboptimal alternatives including decision feedback detectors and prediction-based detectors. All these strategies work well as evidenced by the simulation results. The proposed protocols are especially useful when the required average data rate is high. In addition, we extend the protocols to the multiple-antenna case and provide the design criterion of the differential unitary space time modulation (DUSTM) for TWRC

    Theoretical performance comparison between reference-based coherent BPSK and BCH coded differential BPSK

    Get PDF

    Bound-intersection detection for multiple-symbol differential unitary space-time modulation

    Get PDF
    This paper considers multiple-symbol differential detection (MSD) of differential unitary space-time modulation (DUSTM) over multiple-antenna systems. We derive a novel exact maximum-likelihood (ML) detector, called the bound-intersection detector (BID), using the extended Euclidean algorithm for single-symbol detection of diagonal constellations. While the ML search complexity is exponential in the number of transmit antennas and the data rate, our algorithm, particularly in high signal-to-noise ratio, achieves significant computational savings over the naive ML algorithm and the previous detector based on lattice reduction. We also develop four BID variants for MSD. The first two are ML and use branch-and-bound, the third one is suboptimal, which first uses BID to generate a candidate subset and then exhaustively searches over the reduced space, and the last one generalizes decision-feedback differential detection. Simulation results show that the BID and its MSD variants perform nearly ML, but do so with significantly reduced complexity

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    Successive DF relaying: MS-DIS aided interference suppression and three-stage concatenated architecture design

    No full text
    Conventional single-relay aided two-phase cooperative networks employing coherent detection algorithms incur a significant 50% throughput loss. Furthermore, it is unrealistic to expect that in addition to the task of relaying, the relay-station would dedicate further precious resources to the estimation of the source-relay channel in support of coherent detection. In order to circumvent these problems, we propose decode and-forward (DF) based successive relaying employing noncoherent detection schemes. A crucial challenge in this context is that of suppressing the successive relaying induced interference, despite dispensing with any channel state information (CSI). We overcome this challenge by introducing a novel adaptive Newton algorithm based multiple-symbol differential interference suppression (MS-DIS) scheme. Correspondingly, a three-stage concatenated transceiver architecture is devised. We demonstrate that our proposed system is capable of near-error-free transmissions at low signal-to-noise ratios

    Iterative amplitude/phase multiple-symbol differential sphere detection for DAPSK modulated transmissions

    No full text
    Differentially encoded and non-coherently detected transceivers exhibit a low complexity, since they dispense with complex channel estimation. Albeit this is achieved at the cost of requiring an increased transmit power, they are particularly beneficial, for example in cooperative communication scenarios, where the employment of channel estimation for all the mobile-to-mobile links may become unrealistic. In pursuit of high bandwidth efficiency, differential amplitude and phase shift keying (DAPSK) was devised using constellations of multiple concentric rings. In order to increase resilience against the typical high-Doppler-induced performance degradation of DAPSK and/or enhance the maximum achievable error-free transmission rate for DAPSK modulated systems, multiple-symbol differential detection (MSDD) may be invoked. However, the complexity of the maximum-a-posteriori (MAP) MSDD increases exponentially with the detection window size and hence may become excessive upon increasing the window size, especially in the context of iterative detection aided channel coded system. In order to circumvent this excessive complexity, we conceive a decomposed two-stage iterative amplitude and phase (A/P) detection framework, where the challenge of having a non-constant-modulus constellation is tackled with the aid of a specifically designed information exchange between the independent A/P detection stages, thus allowing the incorporation of reduced-complexity sphere detection (SD). Consequently, a near-MAP-MSDD performance can be achieved at a significantly reduced complexity, which may be five orders of magnitude lower than that imposed by the traditional MAP-MSDD in the 16-DAPSK scenario considered
    corecore