3,296 research outputs found

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms

    On Matching, and Even Rectifying, Dynamical Systems through Koopman Operator Eigenfunctions

    Full text link
    Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of "Cole-Hopf-type" transformations for dynamics.Comment: 34 pages, 10 figure

    On Local Bifurcations in Neural Field Models with Transmission Delays

    Full text link
    Neural field models with transmission delay may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Recent advances in symmetric and network dynamics

    Get PDF
    We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts René Thom's general viewpoint, one version of which became known as “catastrophe theory.” We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette–Taylor flow, flames, the Belousov–Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network
    • …
    corecore