19 research outputs found

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Mathematical Models and Decomposition Algorithms for Cutting and Packing Problems

    Get PDF
    In this thesis, we provide (or review) new and effective algorithms based on Mixed-Integer Linear Programming (MILP) models and/or decomposition approaches to solve exactly various cutting and packing problems. The first three contributions deal with the classical bin packing and cutting stock problems. First, we propose a survey on the problems, in which we review more than 150 references, implement and computationally test the most common methods used to solve the problems (including branch-and-price, constraint programming (CP) and MILP), and we successfully propose new instances that are difficult to solve in practice. Then, we introduce the BPPLIB, a collection of codes, benchmarks, and links for the two problems. Finally, we study in details the main MILP formulations that have been proposed for the problems, we provide a clear picture of the dominance and equivalence relations that exist among them, and we introduce reflect, a new pseudo-polynomial formulation that achieves state of the art results for both problems and some variants. The following three contributions deal with two-dimensional packing problems. First, we propose a method using Logic based Benders’ decomposition for the orthogonal stock cutting problem and some extensions. We solve the master problem through an MILP model while CP is used to solve the slave problem. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. Then, we introduce TwoBinGame, a visual application we developed for students to interactively solve two-dimensional packing problems, and analyze the results obtained by 200 students. Finally, we study a complex optimization problem that originates from the packaging industry, which combines cutting and scheduling decisions. For its solution, we propose mathematical models and heuristic algorithms that involve a non-trivial decomposition method. In the last contribution, we study and strengthen various MILP and CP approaches for three project scheduling problems

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Operational Research: methods and applications

    Get PDF
    This is the final version. Available on open access from Taylor & Francis via the DOI in this recordThroughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Solving two-stage stochastic network design problems to optimality

    Get PDF
    The Steiner tree problem (STP) is a central and well-studied graph-theoretical combinatorial optimization problem which plays an important role in various applications. It can be stated as follows: Given a weighted graph and a set of terminal vertices, find a subset of edges which connects the terminals at minimum cost. However, in real-world applications the input data might not be given with certainty or it might depend on future decisions. For the STP, for example, edge costs representing the costs of establishing links may be subject to inflations and price deviations. In this thesis we tackle data uncertainty by using the concept of stochastic programming and we study the two-stage stochastic version of the Steiner tree problem (SSTP). Thereby, a set of scenarios defines the possible outcomes of a random variable; each scenario is given by its realization probability and defines a set of terminals and edge costs. A feasible solution consists of a subset of edges in the first stage and edge subsets for all scenarios (second stage) such that each terminal set is connected. The objective is to find a solution that minimizes the expected cost. We consider two approaches for solving the SSTP to optimality: combinatorial algorithms, in particular fixed-parameter tractable (FPT) algorithms, and methods from mathematical programming. Regarding the combinatorial algorithms we develop a linear-time algorithm for trees, an FPT algorithm parameterized by the number of terminals, and we consider treewidth-bounded graphs where we give the first FPT algorithm parameterized by the combination of treewidth and number of scenarios. The second approach is based on deriving strong integer programming (IP) formulations for the SSTP. By using orientation properties we introduce new semi-directed cut- and flow-based IP formulations which are shown to be stronger than the undirected models from the literature. To solve these models to optimality we use a decomposition-based two-stage branch&cut algorithm, which is improved by a fast and efficient method for strengthening the optimality cuts. Moreover, we develop new and stronger integer optimality cuts. The computational performance is evaluated in a comprehensive computational study, which shows the superiority of the new formulations, the benefit of the decomposition, and the advantage of using the strengthened optimality cuts. The Steiner forest problem (SFP) is a related problem where sets of terminals need to be connected. On the one hand, the SFP is a generalization of the STP and on the other hand, we show that the SFP is a special case of the SSTP. Therefore, our results are transferable to the SFP and we present the first FPT algorithm for treewidth-bounded graphs and we model new and stronger (semi-)directed cut- and flow-based IP formulations for the SFP. In the second part of this thesis we consider the two-stage stochastic survivable network design problem, an extension of the SSTP where pairs of vertices may demand a higher connectivity. Similarly to the first part we introduce new and stronger semi-directed cut-based models, apply the same decomposition along with the cut strengthening technique, and argue the validity of the newly introduced integer optimality cuts. A computational study shows the benefit, robustness, and good performance of the decomposition and the cut strengthening method
    corecore