956 research outputs found

    On the Equivalence of Quadratic APN Functions

    Get PDF
    Establishing the CCZ-equivalence of a pair of APN functions is generally quite difficult. In some cases, when seeking to show that a putative new infinite family of APN functions is CCZ inequivalent to an already known family, we rely on computer calculation for small values of n. In this paper we present a method to prove the inequivalence of quadratic APN functions with the Gold functions. Our main result is that a quadratic function is CCZ-equivalent to an APN Gold function if and only if it is EA-equivalent to that Gold function. As an application of this result, we prove that a trinomial family of APN functions that exist on finite fields of order 2^n where n = 2 mod 4 are CCZ inequivalent to the Gold functions. The proof relies on some knowledge of the automorphism group of a code associated with such a function.Comment: 13 p

    On relations between CCZ- and EA-equivalences

    Get PDF
    In the present paper we introduce some sufficient conditions and a procedure for checking whether, for a given function, CCZ-equivalence is more general than EA-equivalence together with taking inverses of permutations. It is known from Budaghyan et al. (IEEE Trans. Inf. Theory 52.3, 1141–1152 2006; Finite Fields Appl. 15(2), 150–159 2009) that for quadratic APN functions (both monomial and polynomial cases) CCZ-equivalence is more general. We prove hereby that for non-quadratic APN functions CCZ-equivalence can be more general (by studying the only known APN function which is CCZ-inequivalent to both power functions and quadratics). On the contrary, we prove that for power non-Gold APN functions, CCZ equivalence coincides with EA-equivalence and inverse transformation for n ≤ 8. We conjecture that this is true for any n.acceptedVersio

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    On relations between CCZ- and EA-equivalences

    Get PDF
    In the present paper we introduce some sufficient conditions and a procedure for checking whether, for a given function, CCZ-equivalence is more general than EA-equivalence together with taking inverses of permutations. It is known from Budaghyan, Carlet and Pott (2006) and Budaghyan, Carlet and Leander (2009) that for quadratic APN functions (both monomial and polynomial cases) CCZ-equivalence is more general. We prove hereby that for non-quadratic APN functions CCZ-equivalence can be more general (by studying the only known APN function which is CCZ-inequivalent to both power functions and quadratics). On the contrary, we prove that for pawer no-Gold APN functions, CCZ equivalence coincides with EA-equivalence and inverse transformation for n8n\le 8. We conjecture that this is true for any nn

    Deciding EA-equivalence via invariants

    Get PDF
    We define a family of efficiently computable invariants for (n,m)-functions under EA-equivalence, and observe that, unlike the known invariants such as the differential spectrum, algebraic degree, and extended Walsh spectrum, in the case of quadratic APN functions over F2n\mathbb {F}_{2^n} with n even, these invariants take on many different values for functions belonging to distinct equivalence classes. We show how the values of these invariants can be used constructively to implement a test for EA-equivalence of functions from F2n\mathbb {F}_{2}^{n} to F2m\mathbb {F}_{2}^{m}; to the best of our knowledge, this is the first algorithm for deciding EA-equivalence without resorting to testing the equivalence of associated linear codes.publishedVersio

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin

    On Equivalence of Known Families of APN Functions in Small Dimensions

    Full text link
    In this extended abstract, we computationally check and list the CCZ-inequivalent APN functions from infinite families on F2n\mathbb{F}_2^n for n from 6 to 11. These functions are selected with simplest coefficients from CCZ-inequivalent classes. This work can simplify checking CCZ-equivalence between any APN function and infinite APN families.Comment: This paper is already in "PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

    On Some Properties of Quadratic APN Functions of a Special Form

    Full text link
    In a recent paper, it is shown that functions of the form L1(x3)+L2(x9)L_1(x^3)+L_2(x^9), where L1L_1 and L2L_2 are linear, are a good source for construction of new infinite families of APN functions. In the present work we study necessary and sufficient conditions for such functions to be APN

    On the QIC of quadratic APN functions

    Get PDF
    International audienceVectorial Boolean functions are useful in symmetric cryptography for designing block ciphers among other primitives. One of the main attacks on these ciphers is the differential attack. Differential attacks exploit the highest values in the differential distribution table (DDT). A function is called Almost Perfect Nonlinear (APN) if all entries in the DDT belong to {0, 2}, which is optimal against the differential attack. The search for APN permutations, as well as their classification, has been an open problem for more than 25 years. All these nn-variable permutations are known for nn ≤ 5, but the question remains unsolved for large values of nn. It has been conjectured for a long time that, when nn is even, APN bijective functions do not exist. However, in 2009, Dillon and his coauthors have found an APN permutation of 6 variables. Our aim on this thesis is to find such functions for larger n. Dillon et al.’s approach was finding an APN permutation from a quadratic APN function which are CCZ-equivalent. Two vectorial Boolean functions are “CCZ-equivalent” if there exists an affine permutation that maps the graph of one function to the other. It preserves the differential properties of a function and thus the APN property. Our approach to find APN permutations will be the same. We propose an idea of representing a quadratic vectorial Boolean function using a cubic structure called quadratic indicator cube (QIC). Also, we describe the criteria related to this cube that is necessary and sufficient for a function to be APN. Then we present some algorithms based on backtracking to change the elements of the cube in such a way that if we start from an APN function it remains APN. We implement our modification algorithm in SageMath and then, in order to get better performances, we also implement it in C++. We also use multithreading in order to get better performances. For nn = 6 our algorithm outputs 13 EA-equivalence class of functions, which covers all possible classes for nn = 6
    corecore