12 research outputs found

    Analysis of cubic permutation polynomials for turbo codes

    Full text link
    Quadratic permutation polynomials (QPPs) have been widely studied and used as interleavers in turbo codes. However, less attention has been given to cubic permutation polynomials (CPPs). This paper proves a theorem which states sufficient and necessary conditions for a cubic permutation polynomial to be a null permutation polynomial. The result is used to reduce the search complexity of CPP interleavers for short lengths (multiples of 8, between 40 and 352), by improving the distance spectrum over the set of polynomials with the largest spreading factor. The comparison with QPP interleavers is made in terms of search complexity and upper bounds of the bit error rate (BER) and frame error rate (FER) for AWGN and for independent fading Rayleigh channels. Cubic permutation polynomials leading to better performance than quadratic permutation polynomials are found for some lengths.Comment: accepted for publication to Wireless Personal Communications (19 pages, 4 figures, 5 tables). The final publication is available at springerlink.co

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    The q-ary image of some qm-ary cyclic codes: permutation group and soft-decision decoding

    Get PDF
    Using a particular construction of generator matrices of the q-ary image of qm-ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding of some expanded Reed–Solomon (RS) codes to improve the performance of generalized minimum-distance decoding

    Permutation Polynomial Interleaved Zadoff-Chu Sequences

    Full text link
    Constant amplitude zero autocorrelation (CAZAC) sequences have modulus one and ideal periodic autocorrelation function. Such sequences have been used in communications systems, e.g., for reference signals, synchronization signals and random access preambles. We propose a new family CAZAC sequences, which is constructed by interleaving a Zadoff-Chu sequence by a quadratic permutation polynomial (QPP), or by a permutation polynomial whose inverse is a QPP. It is demonstrated that a set of orthogonal interleaved Zadoff-Chu sequences can be constructed by proper choice of QPPs.Comment: Submitted to IEEE Transactions on Information Theor

    Minimum distance of error correcting codes versus encoding complexity, symmetry, and pseudorandomness

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (leaves 207-214).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.We study the minimum distance of binary error correcting codes from the following perspectives: * The problem of deriving bounds on the minimum distance of a code given constraints on the computational complexity of its encoder. * The minimum distance of linear codes that are symmetric in the sense of being invariant under the action of a group on the bits of the codewords. * The derandomization capabilities of probability measures on the Hamming cube based on binary linear codes with good distance properties, and their variations. Highlights of our results include: * A general theorem that asserts that if the encoder uses linear time and sub-linear memory in the general binary branching program model, then the minimum distance of the code cannot grow linearly with the block length when the rate is nonvanishing. * New upper bounds on the minimum distance of various types of Turbo-like codes. * The first ensemble of asymptotically good Turbo like codes. We prove that depth-three serially concatenated Turbo codes can be asymptotically good. * The first ensemble of asymptotically good codes that are ideals in the group algebra of a group. We argue that, for infinitely many block lengths, a random ideal in the group algebra of the dihedral group is an asymptotically good rate half code with a high probability. * An explicit rate-half code whose codewords are in one-to-one correspondence with special hyperelliptic curves over a finite field of prime order where the number of zeros of a codeword corresponds to the number of rational points.(cont.) * A sharp O(k-1/2) upper bound on the probability that a random binary string generated according to a k-wise independent probability measure has any given weight. * An assertion saying that any sufficiently log-wise independent probability measure looks random to all polynomially small read-once DNF formulas. * An elaborate study of the problem of derandomizability of ACâ‚€ by any sufficiently polylog-wise independent probability measure. * An elaborate study of the problem of approximability of high-degree parity functions on binary linear codes by low-degree polynomials with coefficients in fields of odd characteristics.by Louay M.J. Bazzi.Ph.D

    Part I:

    Get PDF

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)
    corecore