10,623 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Performance analysis of feedback-free collision resolution NDMA protocol

    Get PDF
    To support communications of a large number of deployed devices while guaranteeing limited signaling load, low energy consumption, and high reliability, future cellular systems require efficient random access protocols. However, how to address the collision resolution at the receiver is still the main bottleneck of these protocols. The network-assisted diversity multiple access (NDMA) protocol solves the issue and attains the highest potential throughput at the cost of keeping devices active to acquire feedback and repeating transmissions until successful decoding. In contrast, another potential approach is the feedback-free NDMA (FF-NDMA) protocol, in which devices do repeat packets in a pre-defined number of consecutive time slots without waiting for feedback associated with repetitions. Here, we investigate the FF-NDMA protocol from a cellular network perspective in order to elucidate under what circumstances this scheme is more energy efficient than NDMA. We characterize analytically the FF-NDMA protocol along with the multipacket reception model and a finite Markov chain. Analytic expressions for throughput, delay, capture probability, energy, and energy efficiency are derived. Then, clues for system design are established according to the different trade-offs studied. Simulation results show that FF-NDMA is more energy efficient than classical NDMA and HARQ-NDMA at low signal-to-noise ratio (SNR) and at medium SNR when the load increases.Peer ReviewedPostprint (published version

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053
    • …
    corecore