2,431 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    An Energy-Aware Protocol for Self-Organizing Heterogeneous LTE Systems

    Get PDF
    This paper studies the problem of self-organizing heterogeneous LTE systems. We propose a model that jointly considers several important characteristics of heterogeneous LTE system, including the usage of orthogonal frequency division multiple access (OFDMA), the frequency-selective fading for each link, the interference among different links, and the different transmission capabilities of different types of base stations. We also consider the cost of energy by taking into account the power consumption, including that for wireless transmission and that for operation, of base stations and the price of energy. Based on this model, we aim to propose a distributed protocol that improves the spectrum efficiency of the system, which is measured in terms of the weighted proportional fairness among the throughputs of clients, and reduces the cost of energy. We identify that there are several important components involved in this problem. We propose distributed strategies for each of these components. Each of the proposed strategies requires small computational and communicational overheads. Moreover, the interactions between components are also considered in the proposed strategies. Hence, these strategies result in a solution that jointly considers all factors of heterogeneous LTE systems. Simulation results also show that our proposed strategies achieve much better performance than existing ones

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    LTE-advanced self-organizing network conflicts and coordination algorithms

    Get PDF
    Self-organizing network (SON) functions have been introduced in the LTE and LTEAdvanced standards by the Third Generation Partnership Project as an excellent solution that promises enormous improvements in network performance. However, the most challenging issue in implementing SON functions in reality is the identification of the best possible interactions among simultaneously operating and even conflicting SON functions in order to guarantee robust, stable, and desired network operation. In this direction, the first step is the comprehensive modeling of various types of conflicts among SON functions, not only to acquire a detailed view of the problem, but also to pave the way for designing appropriate Self-Coordination mechanisms among SON functions. In this article we present a comprehensive classification of SON function conflicts, which leads the way for designing suitable conflict resolution solutions among SON functions and implementing SON in reality. Identifying conflicting and interfering relations among autonomous network management functionalities is a tremendously complex task. We demonstrate how analysis of fundamental trade-offs among performance metrics can us to the identification of potential conflicts. Moreover, we present analytical models of these conflicts using reference signal received power plots in multi-cell environments, which help to dig into the complex relations among SON functions. We identify potential chain reactions among SON function conflicts that can affect the concurrent operation of multiple SON functions in reality. Finally, we propose a selfcoordination framework for conflict resolution among multiple SON functions in LTE/LTEAdvanced networks, while highlighting a number of future research challenges for conflict-free operation of SON

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore