1,829 research outputs found

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Efficient and Effective Handling of Exceptions in Java Points-To Analysis

    Get PDF
    A joint points-to and exception analysis has been shown to yield benefits in both precision and performance. Treating exceptions as regular objects, however, incurs significant and rather unexpected overhead. We show that in a typical joint analysis most of the objects computed to flow in and out of a method are due to exceptional control-flow and not normal call-return control-flow. For instance, a context-insensitive analysis of the Antlr benchmark from the DaCapo suite computes 4-5 times more objects going in or out of a method due to exceptional control-flow than due to normal control-flow. As a consequence, the analysis spends a large amount of its time considering exceptions. We show that the problem can be addressed both e ectively and elegantly by coarsening the representation of exception objects. An interesting find is that, instead of recording each distinct exception object, we can collapse all exceptions of the same type, and use one representative object per type, to yield nearly identical precision (loss of less than 0.1%) but with a boost in performance of at least 50% for most analyses and benchmarks and large space savings (usually 40% or more)

    Compiler architecture using a portable intermediate language

    Get PDF
    The back end of a compiler performs machine-dependent tasks and low-level optimisations that are laborious to implement and difficult to debug. In addition, in languages that require run-time services such as garbage collection, the back end must interface with the run-time system to provide those services. The net result is that building a compiler back end entails a high implementation cost. In this dissertation I describe reusable code generation infrastructure that enables the construction of a complete programming language implementation (compiler and run-time system) with reduced effort. The infrastructure consists of a portable intermediate language, a compiler for this language and a low-level run-time system. I provide an implementation of this system and I show that it can support a variety of source programming languages, it reduces the overall eort required to implement a programming language, it can capture and retain information necessary to support run-time services and optimisations, and it produces efficient code

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft
    • …
    corecore