16,882 research outputs found

    The supersymmetric technique for random-matrix ensembles with zero eigenvalues

    Full text link
    The supersymmetric technique is applied to computing the average spectral density near zero energy in the large-N limit of the random-matrix ensembles with zero eigenvalues: B, DIII-odd, and the chiral ensembles (classes AIII, BDI, and CII). The supersymmetric calculations reproduce the existing results obtained by other methods. The effect of zero eigenvalues may be interpreted as reducing the symmetry of the zero-energy supersymmetric action by breaking a certain abelian symmetry.Comment: 22 pages, introduction modified, one reference adde

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    Universality of correlation functions of hermitian random matrices in an external field

    Full text link
    The behavior of correlation functions is studied in a class of matrix models characterized by a measure exp(S)\exp(-S) containing a potential term and an external source term: S=N\tr(V(M)-MA). In the large NN limit, the short-distance behavior is found to be identical to the one obtained in previously studied matrix models, thus extending the universality of the level-spacing distribution. The calculation of correlation functions involves (finite NN) determinant formulae, reducing the problem to the large NN asymptotic analysis of a single kernel KK. This is performed by an appropriate matrix integral formulation of KK. Multi-matrix generalizations of these results are discussed.Comment: 29 pages, Te

    Characteristic polynomials of random matrices

    Full text link
    Number theorists have studied extensively the connections between the distribution of zeros of the Riemann ζ\zeta-function, and of some generalizations, with the statistics of the eigenvalues of large random matrices. It is interesting to compare the average moments of these functions in an interval to their counterpart in random matrices, which are the expectation values of the characteristic polynomials of the matrix. It turns out that these expectation values are quite interesting. For instance, the moments of order 2K scale, for unitary invariant ensembles, as the density of eigenvalues raised to the power K2K^2 ; the prefactor turns out to be a universal number, i.e. it is independent of the specific probability distribution. An equivalent behaviour and prefactor had been found, as a conjecture, within number theory. The moments of the characteristic determinants of random matrices are computed here as limits, at coinciding points, of multi-point correlators of determinants. These correlators are in fact universal in Dyson's scaling limit in which the difference between the points goes to zero, the size of the matrix goes to infinity, and their product remains finite.Comment: 30 pages,late

    Stability Estimates and Structural Spectral Properties of Saddle Point Problems

    Full text link
    For a general class of saddle point problems sharp estimates for Babu\v{s}ka's inf-sup stability constants are derived in terms of the constants in Brezzi's theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported
    corecore