113 research outputs found

    Kernel methods for detecting coherent structures in dynamical data

    Full text link
    We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space (RKHS) operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes (VAMP) score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition (DMD) called coherent mode decomposition (CMD). Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods

    Spectral Dimensionality Reduction

    Get PDF
    In this paper, we study and put under a common framework a number of non-linear dimensionality reduction methods, such as Locally Linear Embedding, Isomap, Laplacian Eigenmaps and kernel PCA, which are based on performing an eigen-decomposition (hence the name 'spectral'). That framework also includes classical methods such as PCA and metric multidimensional scaling (MDS). It also includes the data transformation step used in spectral clustering. We show that in all of these cases the learning algorithm estimates the principal eigenfunctions of an operator that depends on the unknown data density and on a kernel that is not necessarily positive semi-definite. This helps to generalize some of these algorithms so as to predict an embedding for out-of-sample examples without having to retrain the model. It also makes it more transparent what these algorithm are minimizing on the empirical data and gives a corresponding notion of generalization error. Dans cet article, nous étudions et développons un cadre unifié pour un certain nombre de méthodes non linéaires de réduction de dimensionalité, telles que LLE, Isomap, LE (Laplacian Eigenmap) et ACP à noyaux, qui font de la décomposition en valeurs propres (d'où le nom "spectral"). Ce cadre inclut également des méthodes classiques telles que l'ACP et l'échelonnage multidimensionnel métrique (MDS). Il inclut aussi l'étape de transformation de données utilisée dans l'agrégation spectrale. Nous montrons que, dans tous les cas, l'algorithme d'apprentissage estime les fonctions propres principales d'un opérateur qui dépend de la densité inconnue de données et d'un noyau qui n'est pas nécessairement positif semi-défini. Ce cadre aide à généraliser certains modèles pour prédire les coordonnées des exemples hors-échantillons sans avoir à réentraîner le modèle. Il aide également à rendre plus transparent ce que ces algorithmes minimisent sur les données empiriques et donne une notion correspondante d'erreur de généralisation.non-parametric models, non-linear dimensionality reduction, kernel models, modèles non paramétriques, réduction de dimensionalité non linéaire, modèles à noyau

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature

    The Sample Complexity of Dictionary Learning

    Full text link
    A large set of signals can sometimes be described sparsely using a dictionary, that is, every element can be represented as a linear combination of few elements from the dictionary. Algorithms for various signal processing applications, including classification, denoising and signal separation, learn a dictionary from a set of signals to be represented. Can we expect that the representation found by such a dictionary for a previously unseen example from the same source will have L_2 error of the same magnitude as those for the given examples? We assume signals are generated from a fixed distribution, and study this questions from a statistical learning theory perspective. We develop generalization bounds on the quality of the learned dictionary for two types of constraints on the coefficient selection, as measured by the expected L_2 error in representation when the dictionary is used. For the case of l_1 regularized coefficient selection we provide a generalization bound of the order of O(sqrt(np log(m lambda)/m)), where n is the dimension, p is the number of elements in the dictionary, lambda is a bound on the l_1 norm of the coefficient vector and m is the number of samples, which complements existing results. For the case of representing a new signal as a combination of at most k dictionary elements, we provide a bound of the order O(sqrt(np log(m k)/m)) under an assumption on the level of orthogonality of the dictionary (low Babel function). We further show that this assumption holds for most dictionaries in high dimensions in a strong probabilistic sense. Our results further yield fast rates of order 1/m as opposed to 1/sqrt(m) using localized Rademacher complexity. We provide similar results in a general setting using kernels with weak smoothness requirements

    On the Sample Complexity of Subspace Learning

    Full text link
    A large number of algorithms in machine learning, from principal component analysis (PCA), and its non-linear (kernel) extensions, to more recent spectral embedding and support estimation methods, rely on estimating a linear subspace from samples. In this paper we introduce a general formulation of this problem and derive novel learning error estimates. Our results rely on natural assumptions on the spectral properties of the covariance operator associated to the data distribu- tion, and hold for a wide class of metrics between subspaces. As special cases, we discuss sharp error estimates for the reconstruction properties of PCA and spectral support estimation. Key to our analysis is an operator theoretic approach that has broad applicability to spectral learning methods.Comment: Extendend Version of conference pape
    corecore