14,476 research outputs found

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular values of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and Chuang. The proposed quantum circuits have a very simple structure, often give rise to optimal algorithms and have appealing constant factors, while usually only use a constant number of ancilla qubits. We show that singular value transformation leads to novel algorithms. We give an efficient solution to a certain "non-commutative" measurement problem and propose a new method for singular value estimation. We also show how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show how to efficiently implement principal component regression. "Singular value transformation" is conceptually simple and efficient, and leads to a unified framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate this by showing how it generalizes a number of prominent quantum algorithms, including: optimal Hamiltonian simulation, implementing the Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust oblivious amplitude amplification, fast QMA amplification, fast quantum OR lemma, certain quantum walk results and several quantum machine learning algorithms. In order to exploit the strengths of the presented method it is useful to know its limitations too, therefore we also prove a lower bound on the efficiency of singular value transformation, which often gives optimal bounds.Comment: 67 pages, 1 figur

    Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver

    Full text link
    Recently variational quantum algorithms have been considered promising quantum computation methods, where the mainstream algorithms are based on the conventional quantum circuit scheme. However, in the Measurement-Based Quantum Computation (MBQC) scheme, multi-qubit rotation operations are implemented with a straightforward approach that only requires a constant number of single-qubit measurements, providing potential advantages in both resource cost and fidelity. The structure of Hamiltonian Variational Ansatz (HVA) aligns well with this characteristic. In this paper, we propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, alluded to as Measurement-Based Hamiltonian Variational Ansatz (MBHVA). We then demonstrate its effectiveness, efficiency, and advantages with two quantum many-body system models. Numerical experiments show that MBHVA is expected to reduce resource overhead compared to the construction of quantum circuits especially in the presence of large-scale multi-qubit rotation operations. Furthermore, when compared to measurement-based Hardware Efficient Ansatz (MBHEA) on quantum many-body system problems, MBHVA also demonstrates superior performance. We conclude that the MBQC scheme is potentially better suited for quantum simulation than the circuit-based scheme in terms of both resource efficiency and error mitigation

    Efficient Algorithms for Universal Quantum Simulation

    Full text link
    A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

    Using Quantum Computers for Quantum Simulation

    Full text link
    Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beginning of the field in the 1980s. Moreover, useful results beyond the reach of classical computation are expected to be accessible with fewer than a hundred qubits, making quantum simulation potentially one of the earliest practical applications of quantum computers. In this paper we survey the theoretical and experimental development of quantum simulation using quantum computers, from the first ideas to the intense research efforts currently underway.Comment: 43 pages, 136 references, review article, v2 major revisions in response to referee comments, v3 significant revisions, identical to published version apart from format, ArXiv version has table of contents and references in alphabetical orde

    Pulse Width Modulation for Speeding Up Quantum Optimal Control Design

    Full text link
    This paper focuses on accelerating quantum optimal control design for complex quantum systems. Based on our previous work [{arXiv:1607.04054}], we combine Pulse Width Modulation (PWM) and gradient descent algorithm into solving quantum optimal control problems, which shows distinct improvement of computational efficiency in various cases. To further apply this algorithm to potential experiments, we also propose the smooth realization of the optimized control solution, e.g. using Gaussian pulse train to replace rectangular pulses. Based on the experimental data of the D-Norleucine molecule, we numerically find optimal control functions in 33-qubit and 66-qubit systems, and demonstrate its efficiency advantage compared with basic GRAPE algorithm

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...
    • …
    corecore