26,823 research outputs found

    Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia

    Get PDF
    WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional noninterconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system

    Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia

    Get PDF
    WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional non-interconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system

    Microgrids & District Energy: Pathways To Sustainable Urban Development

    Get PDF
    A microgrid is an energy system specifically designed to meet some of the energy needs of a group of buildings, a campus, or an entire community. It can include local facilities that generate electricity, heating, and/or cooling; store energy; distribute the energy generated; and manage energy consumption intelligently and in real time. Microgrids enable economies of scale that facilitate local production of energy in ways that can advance cost reduction, sustainability, economic development, and resilience goals. As they often involve multiple stakeholders, and may encompass numerous distinct property boundaries, municipal involvement is often a key factor for successful implementation. This report provides an introduction to microgrid concepts, identifies the benefits and most common road blocks to implementation, and discusses proactive steps municipalities can take to advance economically viable and environmentally superior microgrids. It also offers advocacy suggestions for municipal leaders and officials to pursue at the state and regional level. The contents are targeted to municipal government staff but anyone looking for introductory material on microgrids should find it useful

    Market and Economic Modelling of the Intelligent Grid: 1st Interim Report 2009

    Get PDF
    The overall goal of Project 2 has been to provide a comprehensive understanding of the impacts of distributed energy (DG) on the Australian Electricity System. The research team at the UQ Energy Economics and Management Group (EEMG) has constructed a variety of sophisticated models to analyse the various impacts of significant increases in DG. These models stress that the spatial configuration of the grid really matters - this has tended to be neglected in economic discussions of the costs of DG relative to conventional, centralized power generation. The modelling also makes it clear that efficient storage systems will often be critical in solving transient stability problems on the grid as we move to the greater provision of renewable DG. We show that DG can help to defer of transmission investments in certain conditions. The existing grid structure was constructed with different priorities in mind and we show that its replacement can come at a prohibitive cost unless the capability of the local grid to accommodate DG is assessed very carefully.Distributed Generation. Energy Economics, Electricity Markets, Renewable Energy

    Financial Analysis of a Grid-connected Photovoltaic System in South Florida

    Full text link
    In this paper the performance and financial analysis of a grid-connected photovoltaic system installed at Florida Atlantic University (FAU) is evaluated. The power plant has the capacity of 14.8 kW and has been under operation since August 2014. This solar PV system is composed of two 7.4 kW sub-arrays, one fixed and one with single axis tracking. First, an overview of the system followed by local weather characteristics in Boca Raton, Florida is presented. In addition, monthly averaged daily solar radiation in Boca Raton as well as system AC are calculated utilizing the PVwatts simulation calculator. Inputs such as module and inverter specifications are applied to the System Advisor Model (SAM) to design and optimize the system. Finally, the estimated local load demand as well as simulation results are extracted and analyzed.Comment: 6 Pages, IEEE PVSC 2017 Conference, Washington D.

    Integration of renewable energy sources in the distribution network

    Get PDF
    Tato prĂĄce uvĂĄdĂ­ obecnĂ© informace o obnovitelnĂœch zdrojĂ­ch energie, typech elektrĂĄren a jejich pracovnĂ­ch principech. PrĂĄce je zaměƙena na větrnĂ© elektrĂĄrny (principy, typy, komponenty, vĂœhody a nevĂœhody). Obsahuje takĂ© pravidla pro pƙipojovĂĄnĂ­ rozptĂœlenĂœch zdrojĆŻ energie k distribučnĂ­ soustavě. V praktickĂ© části je ƙeĆĄena pƙípadovĂĄ studie, kterĂĄ demonstruje napěƄovĂ© charakteristiky pro sĂ­Ć„ vysokĂ©ho napětĂ­ pƙed a po pƙipojenĂ­ větrnĂ© elektrĂĄrny do distribučnĂ­ sĂ­tě se dvěma rĆŻznĂœmi hodnotami ĂșčinĂ­ku.This thesis will provide general information about renewable energy sources, types of power plants and their working principles. The thesis is focused on wind power plants (principles, types, components, advantages and disadvantages). It also includes the rules for connecting dispersed energy sources to the distribution system. In practical part, a case study demonstrates voltage characteristics before and after connection of a wind power plant to a distribution network with two different values of power factor
    • 

    corecore