3,582 research outputs found

    VoG: Summarizing and Understanding Large Graphs

    Get PDF
    How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the "importance" of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a "vocabulary" of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of subgraphs, find the most succinct description of a graph in terms of this vocabulary. We measure success in a well-founded way by means of the Minimum Description Length (MDL) principle: a subgraph is included in the summary if it decreases the total description length of the graph. Our contributions are three-fold: (a) formulation: we provide a principled encoding scheme to choose vocabulary subgraphs; (b) algorithm: we develop \method, an efficient method to minimize the description cost, and (c) applicability: we report experimental results on multi-million-edge real graphs, including Flickr and the Notre Dame web graph.Comment: SIAM International Conference on Data Mining (SDM) 201

    Subgraph covers -- An information theoretic approach to motif analysis in networks

    Get PDF
    Many real world networks contain a statistically surprising number of certain subgraphs, called network motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph frequencies in the original network with a statistical null model. In this paper we propose an alternative approach to motif analysis where network motifs are defined to be connectivity patterns that occur in a subgraph cover that represents the network using minimal total information. A subgraph cover is defined to be a set of subgraphs such that every edge of the graph is contained in at least one of the subgraphs in the cover. Some recently introduced random graph models that can incorporate significant densities of motifs have natural formulations in terms of subgraph covers and the presented approach can be used to match networks with such models. To prove the practical value of our approach we also present a heuristic for the resulting NP-hard optimization problem and give results for several real world networks.Comment: 10 pages, 7 tables, 1 Figur

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem
    • …
    corecore