45,100 research outputs found

    Energy-Efficient Power Control in Impulse Radio UWB Wireless Networks

    Full text link
    In this paper, a game-theoretic model for studying power control for wireless data networks in frequency-selective multipath environments is analyzed. The uplink of an impulse-radio ultrawideband system is considered. The effects of self-interference and multiple-access interference on the performance of generic Rake receivers are investigated for synchronous systems. Focusing on energy efficiency, a noncooperative game is proposed in which users in the network are allowed to choose their transmit powers to maximize their own utilities, and the Nash equilibrium for the proposed game is derived. It is shown that, due to the frequency selective multipath, the noncooperative solution is achieved at different signal-to-interference-plus-noise ratios, depending on the channel realization and the type of Rake receiver employed. A large-system analysis is performed to derive explicit expressions for the achieved utilities. The Pareto-optimal (cooperative) solution is also discussed and compared with the noncooperative approach.Comment: Submitted to the IEEE Journal on Selected Topics in Signal Processing - Special issue on Performance Limits of Ultra-Wideband System

    Energy efficiency in cellular wireless networks

    Get PDF
    Energy efficiency of Long Term Evolution (LTE) cellular communication networks has become a major concern for network operators, not only to reduce the operational costs, but also to reduce their environmental effects. Within LTE cellular networks, base stations are responsible for most of the energy consumption, consuming 70-95% or more of the network power depending on the network topology, configuration, radio technology and data rates that are used. Power control is an important function in cellular wireless networks and refers to setting the output power levels of transmitters, termed eNodeB in the downlink and user equipment (UEs) in the uplink. LTE utilizes two different mechanisms for uplink power control: Open Loop Power Control (OLPC) and Closed Loop Power Control (CLPC). Uplink OLPC is performed by the UE following eNodeB configuration and can compensate for long term channel variation such as path loss and shadowing. The uplink CLPC mechanism attempts to improve power control performance by compensating fast channel variations due to multipath fading. In CLPC the eNodeB sends Transmit Power Control (TPC) commands to the UE to adjust the UE’s transmit power. This thesis focuses on an Open Loop Power Control (OLPC) scheme for LTE uplink by using the Okumura-Hata propagation path loss model to set the User Equipment (UE) uplink transmit power control parameters in order to reduce the UE energy consumption. In general, the UE requires more power to connect to distant base stations than closer base stations and therefore this thesis analyses the required power levels using the Okumura-Hata propagation path loss model. Estimation of path loss is very important in initial deployment of wireless network and cell planning. This thesis analyses the Okumura-Hata propagation path loss in different receiver antenna heights (

    Optimization of Single-Hop SAMAC Network and Characterization of Antenna Effects for Multi-Hop Network

    Get PDF
    Wireless sensor networks are becoming more prevalent in today’s world and being used for such tasks as monitoring borders, intrusion detection and even to control different switches/controls in vehicles. With any wireless system, several issues exist, which can affect the performance of the network such as power level, receiver thresholds, environment the nodes are in and objects/obstructions near the network. The main problems with wireless sensor networks are dropped packets, noise, power consumption and lack of reliability. The goal of the project is to study networks in different environments and look at how the network performance changes. The first goal is to optimize the network for low power consumption, and minimal data transmit time. To achieve these optimal conditions, the timeslot duration, power level, and inter-arrival time are modified in several combinations. The tests are run on a single-hop, contention-based wireless network with one to eight nodes competing for transmission depending on the given test. The nodes are separated at a distance of five feet from the sink node. The antennas on the wireless sensor network nodes are stated as being almost omni-directional [5]. Since the power pattern of the antenna will affect quality of network communications if not perfect, the orientation of the nodes is examined to see how a change in orientation affects how the network is created in a multi-hop setting. The second goal is to analyze the effects of three different node orientations on how the network is formed. The SAMAC code is run for each orientation and the network topology is recorded. This topology will be examined to see if a difference exists in how the nodes communicate when oriented differently. Lastly, using the results from testing, guidelines for optimization of the networks will be created. Recommendations will be given on how to set up both the single-hop and multi-hop networks for ideal communications. Future research topics related to current research will also be suggested.ETRINo embarg

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations
    • …
    corecore