890 research outputs found

    Cryptography: Against AI and QAI Odds

    Full text link
    Artificial Intelligence (AI) presents prodigious technological prospects for development, however, all that glitters is not gold! The cyber-world faces the worst nightmare with the advent of AI and quantum computers. Together with Quantum Artificial Intelligence (QAI), they pose a catastrophic threat to modern cryptography. It would also increase the capability of cryptanalysts manifold, with its built-in persistent and extensive predictive intelligence. This prediction ability incapacitates the constrained message space in device cryptography. With the comparison of these assumptions and the intercepted ciphertext, the code-cracking process will considerably accelerate. Before the vigorous and robust developments in AI, we have never faced and never had to prepare for such a plaintext-originating attack. The supremacy of AI can be challenged by creating ciphertexts that would give the AI attacker erroneous responses stymied by randomness and misdirect them. AI threat is deterred by deviating from the conventional use of small, known-size keys and pattern-loaded ciphers. The strategy is vested in implementing larger secret size keys, supplemented by ad-hoc unilateral randomness of unbound limitations and a pattern-devoid technique. The very large key size can be handled with low processing and computational burden to achieve desired unicity distances. The strategy against AI odds is feasible by implementing non-algorithmic randomness, large and inexpensive memory chips, and wide-area communication networks. The strength of AI, i.e., randomness and pattern detection can be used to generate highly optimized ciphers and algorithms. These pattern-devoid, randomness-rich ciphers also provide a timely and plausible solution for NIST's proactive approach toward the quantum challenge

    A survey on machine learning applied to symmetric cryptanalysis

    Get PDF
    In this work we give a short review of the recent progresses of machine learning techniques applied to cryptanalysis of symmetric ciphers, with particular focus on artificial neural networks. We start with some terminology and basics of neural networks, to then classify the recent works in two categories: "black-box cryptanalysis", techniques that not require previous information about the cipher, and "neuro-aided cryptanalysis", techniques used to improve existing methods in cryptanalysis

    Reviewing the effectiveness of artificial intelligence techniques against cyber security risks

    Get PDF
    The rapid increase in malicious cyber-criminal activities has made the field of cybersecurity a crucial research discipline. Over the areas, the advancement in information technology has enabled cybercriminals to launch increasingly sophisticated attacks that can endanger cybersecurity. Due to this, traditional cybersecurity solutions have become ineffective against emerging cyberattacks. However, the advent of Artificial Intelligence (AI) – particularly Machine Learning (ML) and Deep Learning (DL) – and cryptographic techniques have shown promising results in countering the evolving cyber threats caused by adversaries. Therefore, in this study, AI's potential in enhancing cybersecurity solutions is discussed. Additionally, the study has provided an in-depth analysis of different AI-based techniques that can detect, analyse, and prevent cyber threats. In the end, the present study has also discussed future research opportunities that are linked with the development of AI systems in the field of cybersecurity

    Information Leakage Attacks and Countermeasures

    Get PDF
    The scientific community has been consistently working on the pervasive problem of information leakage, uncovering numerous attack vectors, and proposing various countermeasures. Despite these efforts, leakage incidents remain prevalent, as the complexity of systems and protocols increases, and sophisticated modeling methods become more accessible to adversaries. This work studies how information leakages manifest in and impact interconnected systems and their users. We first focus on online communications and investigate leakages in the Transport Layer Security protocol (TLS). Using modern machine learning models, we show that an eavesdropping adversary can efficiently exploit meta-information (e.g., packet size) not protected by the TLS’ encryption to launch fingerprinting attacks at an unprecedented scale even under non-optimal conditions. We then turn our attention to ultrasonic communications, and discuss their security shortcomings and how adversaries could exploit them to compromise anonymity network users (even though they aim to offer a greater level of privacy compared to TLS). Following up on these, we delve into physical layer leakages that concern a wide array of (networked) systems such as servers, embedded nodes, Tor relays, and hardware cryptocurrency wallets. We revisit location-based side-channel attacks and develop an exploitation neural network. Our model demonstrates the capabilities of a modern adversary but also presents an inexpensive tool to be used by auditors for detecting such leakages early on during the development cycle. Subsequently, we investigate techniques that further minimize the impact of leakages found in production components. Our proposed system design distributes both the custody of secrets and the cryptographic operation execution across several components, thus making the exploitation of leaks difficult

    A State-of-the-Art Survey for IoT Security and Energy Management based on Hashing Algorithms

    Get PDF
    The Internet of Things (IoT) has developed as a disruptive technology with wide-ranging applications across several sectors, enabling the connecting of devices and the acquisition of substantial volumes of data. Nevertheless, the rapid expansion of networked gadgets has generated substantial apprehensions pertaining to security and energy administration. This survey paper offers a detailed examination of the present state of research and advancements in the field of Internet of Things (IoT) security and energy management. The work places special emphasis on the use of hashing algorithms in this context. The security of the Internet of Things (IoT) is a crucial element in safeguarding the confidentiality, integrity, and availability of data inside IoT environments. Hashing algorithms have gained prominence as a fundamental tool for enhancing IoT security. This survey reviews the state of the art in cryptographic hashing techniques and their application in securing IoT devices, data, and communication. Furthermore, the efficient management of energy resources is essential to prolong the operational lifespan of IoT devices and reduce their environmental impact. Hashing algorithms are also instrumental in optimizing energy consumption through data compression, encryption, and authentication. This survey explores the latest advancements in energy-efficient IoT systems and how hashing algorithms contribute to energy management strategies. Through a comprehensive analysis of recent research findings and technological advancements, this survey identifies key challenges and open research questions in the fields of IoT security and energy management based on hashing algorithms. It provides valuable insights for researchers, practitioners, and policymakers to further advance the state of the art in these critical IoT domains

    Model Building and Security Analysis of PUF-Based Authentication

    Get PDF
    In the context of hardware systems, authentication refers to the process of confirming the identity and authenticity of chip, board and system components such as RFID tags, smart cards and remote sensors. The ability of physical unclonable functions (PUF) to provide bitstrings unique to each component can be leveraged as an authentication mechanism to detect tamper, impersonation and substitution of such components. However, authentication requires a strong PUF, i.e., one capable of producing a large, unique set of bits per device, and, unlike secret key generation for encryption, has additional challenges that relate to machine learning attacks, protocol attacks and constraints on device resources. We describe the requirements for PUF-based authentication, and present a PUF primitive and protocol designed for authentication in resource constrained devices. Our experimental results are derived from a 28 nm Xilinx FPGA. In the authentication scenario, strong PUFs are required since the adversary could collect a subset of challenges and response pairsto build a model and predict the responses for unseen challenges. Therefore, strong PUFs need to provide exponentially large challenge space and be resilient to model building attacks. We investigate the security properties of a Hardware-embedded Delay PUF called HELP which leverages within-die variations in path delays within a hardware-implemented macro (functional unit) as the entropy source. Several features of the HELP processing engine significantly improve its resistance to model-building attacks. We also investigate a novel technique that significantly improves the statistically quality of the generated bitstring for HELP. Stability across environmental variations such as temperature and voltage, is critically important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance schemes have been proposed but both of these require helper data to be stored for the regeneration process. Unfortunately, helper data adds time and area overhead to the PUF system and provides opportunities for adversaries to reverse engineer the secret bitstring. We propose a non-volatile memory-based (NVM) PUF that is able to avoid bit flips without requiring any type of helper data. We describe the technique in the context of emerging nano-devices, in particular, resistive random access memory (Memristor) cells, but the methodology is applicable to any type of NVM including Flash

    Cybersecurity Research: Challenges and Course of Action

    Get PDF

    Software Grand Exposure: SGX Cache Attacks Are Practical

    Full text link
    Side-channel information leakage is a known limitation of SGX. Researchers have demonstrated that secret-dependent information can be extracted from enclave execution through page-fault access patterns. Consequently, various recent research efforts are actively seeking countermeasures to SGX side-channel attacks. It is widely assumed that SGX may be vulnerable to other side channels, such as cache access pattern monitoring, as well. However, prior to our work, the practicality and the extent of such information leakage was not studied. In this paper we demonstrate that cache-based attacks are indeed a serious threat to the confidentiality of SGX-protected programs. Our goal was to design an attack that is hard to mitigate using known defenses, and therefore we mount our attack without interrupting enclave execution. This approach has major technical challenges, since the existing cache monitoring techniques experience significant noise if the victim process is not interrupted. We designed and implemented novel attack techniques to reduce this noise by leveraging the capabilities of the privileged adversary. Our attacks are able to recover confidential information from SGX enclaves, which we illustrate in two example cases: extraction of an entire RSA-2048 key during RSA decryption, and detection of specific human genome sequences during genomic indexing. We show that our attacks are more effective than previous cache attacks and harder to mitigate than previous SGX side-channel attacks
    • …
    corecore