4,806 research outputs found

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    Controllable radio interference for experimental and testing purposes in wireless sensor networks

    Get PDF
    Abstract—We address the problem of generating customized, controlled interference for experimental and testing purposes in Wireless Sensor Networks. The known coexistence problems between electronic devices sharing the same ISM radio band drive the design of new solutions to minimize interference. The validation of these techniques and the assessment of protocols under external interference require the creation of reproducible and well-controlled interference patterns on real nodes, a nontrivial and time-consuming task. In this paper, we study methods to generate a precisely adjustable level of interference on a specific channel, with lowcost equipment and rapid calibration. We focus our work on the platforms carrying the CC2420 radio chip and we show that, by setting such transceiver in special mode, we can quickly and easily generate repeatable and precise patterns of interference. We show how this tool can be extremely useful for researchers to quickly investigate the behaviour of sensor network protocols and applications under different patterns of interference, and we further evaluate its performance

    Hierarchical fault tolerance in wireless networked control systems

    Get PDF
    Wireless Networked Control Systems (WNCS) have recently emerged as a replacement for wired control networks. Wireless networked control systems are more suitable for environments that require higher flexibility and robustness. In previous literature a wireless manufacturing line was proposed. The work-cells communication was through IEEE 802.11 technologies and a switched Ethernet backbone. This thesis is aiming to improve the current solution by adding a supervisor to the existing system. The supervisor could be either in passive or active mode. Passive supervisor would intervene when all controllers in the network fail, while active supervisor would act once any controller on the line fail. The system was simulated using OPNET software with 95% confidence analysis. The ability of the system to withstand external interference was assessed through adding a single band jammer to the OPNET simulation. The system was able to hold up to 8KB interfering file sent from a single band jammer affecting the full Wi-Fi spectrum. All results were subjected to a 95% confidence analysis The performability of passive and active supervisor systems was compared. A Markov model of both systems was built. It was shown that by time, the performability of a passive supervisor system is enhanced while that of an active supervisor system degraded. However, the active supervisor showed a better performability in all cases

    Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems

    Full text link
    We consider the problem of allocating radio resources over wireless communication links to control a series of independent wireless control systems. Low-latency transmissions are necessary in enabling time-sensitive control systems to operate over wireless links with high reliability. Achieving fast data rates over wireless links thus comes at the cost of reliability in the form of high packet error rates compared to wired links due to channel noise and interference. However, the effect of the communication link errors on the control system performance depends dynamically on the control system state. We propose a novel control-communication co-design approach to the low-latency resource allocation problem. We incorporate control and channel state information to make scheduling decisions over time on frequency, bandwidth and data rates across the next-generation Wi-Fi based wireless communication links that close the control loops. Control systems that are closer to instability or further from a desired range in a given control cycle are given higher packet delivery rate targets to meet. Rather than a simple priority ranking, we derive precise packet error rate targets for each system needed to satisfy stability targets and make scheduling decisions to meet such targets while reducing total transmission time. The resulting Control-Aware Low Latency Scheduling (CALLS) method is tested in numerous simulation experiments that demonstrate its effectiveness in meeting control-based goals under tight latency constraints relative to control-agnostic scheduling

    BurstProbe: Debugging Time-Critical Data Delivery in Wireless Sensor Networks

    Get PDF
    In this paper we present BurstProbe, a new technique to accurately measure link burstiness in a wireless sensor network employed for time-critical data delivery. Measurement relies on shared probing slots that are embedded in the transmission schedule and used by nodes to assess link burstiness over time. The acquired link burstiness information can be stored in the node's flash memory and relied upon to diagnose transmission problems when missed deadlines occur. Thus, accurate diagnosis is achieved in a distributed manner and without the overhead of transmitting rich measurement data to a central collection point. For the purpose of evaluation we have implemented BurstProbe in the GinMAC WSN protocol and we are able to demonstrate it is an accurate tool to debug time-critical data delivery. In addition, we analyze the cost of implementingBurstProbe and investigate its effectiveness
    • …
    corecore