126 research outputs found

    Adaptive control and noise suppression by a variable-gain gradient algorithm

    Get PDF
    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters

    Algorithms and structures for long adaptive echo cancellers

    Get PDF
    The main theme of this thesis is adaptive echo cancellation. Two novel independent approaches are proposed for the design of long echo cancellers with improved performance. In the first approach, we present a novel structure for bulk delay estimation in long echo cancellers which considerably reduces the amount of excess error. The miscalculation of the delay between the near-end and the far-end sections is one of the main causes of this excess error. Two analyses, based on the Least Mean Squares (LMS) algorithm, are presented where certain shapes for the transitions between the end of the near-end section and the beginning of the far-end one are considered. Transient and steady-state behaviours and convergence conditions for the proposed algorithm are studied. Comparisons between the algorithms developed for each transition are presented, and the simulation results agree well with the theoretical derivations. In the second approach, a generalised performance index is proposed for the design of the echo canceller. The proposed algorithm consists of simultaneously applying the LMS algorithm to the near-end section and the Least Mean Fourth (LMF) algorithm to the far-end section of the echo canceller. This combination results in a substantial improvement of the performance of the proposed scheme over both the LMS and other algorithms proposed for comparison. In this approach, the proposed algorithm will be henceforth called the Least Mean Mixed-Norm (LMMN) algorithm. The advantages of the LMMN algorithm over previously reported ones are two folds: it leads to a faster convergence and results in a smaller misadjustment error. Finally, the convergence properties of the LMMN algorithm are derived and the simulation results confirm the superior performance of this proposed algorithm over other well known algorithms

    Discrete wavelet transform-based RI adaptive algorithm for system identification

    Get PDF
    In this paper, we propose a new adaptive filtering algorithm for system identification. The algorithm is based on the recursive inverse (RI) adaptive algorithm which suffers from low convergence rates in some applications; i.e., the eigenvalue spread of the autocorrelation matrix is relatively high. The proposed algorithm applies discrete-wavelet transform (DWT) to the input signal which, in turn, helps to overcome the low convergence rate of the RI algorithm with relatively small step-size(s). Different scenarios has been investigated in different noise environments in system identification setting. Experiments demonstrate the advantages of the proposed DWT recursive inverse (DWT-RI) filter in terms of convergence rate and mean-square-error (MSE) compared to the RI, discrete cosine transform LMS (DCTLMS), discrete-wavelet transform LMS (DWT-LMS) and recursive-least-squares (RLS) algorithms under same conditions

    QR Decomposition For Adaptive Filtering Application

    Get PDF
    This thesis is designed to investigate adaptive filtering problem based on QR decomposition techniques. An adaptive filter is a self modifying digital filter that adjusts its parameters in order to minimize a defined error function. Adaptive algorithm is applied to adapt the coefficient of the used filter to nonstationary process in which the coefficient of the adaptive filter is adapted in order to minimize the error function. Adaptive filtering problem is an adaptive form of least squares problem
    corecore