4,566 research outputs found

    Personalising Learning

    Get PDF
    This report presents the findings of the Personalising Learning project, which was commissioned by Becta. The core aim of the project is to develop a robust model of the effective use of digital technologies for the personalising of learning. Personalising learning in this context involves the tailoring of pedagogy, curriculum and learning support to meet the needs and aspirations of individual learners irrespective of ability, culture or social status in order to nurture the unique talents of every pupil. Section 2 of this report outlines the background and aims of this research project. Section 3 traces the development of the model and the accompanying learning equation. The key concept encapsulated in this model is that of overlapping action spaces, school, teaching, personal and living spaces, in which learning occurs. These spaces are populated by the key educational stakeholders: learners, their teachers, their family and peers. In each of these spaces a range of digital technologies is available to support the learner. Section 4 is a validation of the model using evidence from field research

    Prioritising references for systematic reviews with RobotAnalyst: A user study

    Get PDF
    Screening references is a time-consuming step necessary for systematic reviews and guideline development. Previous studies have shown that human effort can be reduced by using machine learning software to prioritise large reference collections such that most of the relevant references are identified before screening is completed. We describe and evaluate RobotAnalyst, a Web-based software system that combines text-mining and machine learning algorithms for organising references by their content and actively prioritising them based on a relevancy classification model trained and updated throughout the process. We report an evaluation over 22 reference collections (most are related to public health topics) screened using RobotAnalyst with a total of 43 610 abstract-level decisions. The number of references that needed to be screened to identify 95% of the abstract-level inclusions for the evidence review was reduced on 19 of the 22 collections. Significant gains over random sampling were achieved for all reviews conducted with active prioritisation, as compared with only two of five when prioritisation was not used. RobotAnalyst's descriptive clustering and topic modelling functionalities were also evaluated by public health analysts. Descriptive clustering provided more coherent organisation than topic modelling, and the content of the clusters was apparent to the users across a varying number of clusters. This is the first large-scale study using technology-assisted screening to perform new reviews, and the positive results provide empirical evidence that RobotAnalyst can accelerate the identification of relevant studies. The results also highlight the issue of user complacency and the need for a stopping criterion to realise the work savings

    Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments

    Full text link
    Recent advances in computing and robotics offer significant potential for improved autonomy in the operation and utilization of today’s buildings. Examples of such building environment functions that could be improved through automation include: a) building performance monitoring for real-time system control and long-term asset management; and b) assisted indoor navigation for improved accessibility and wayfinding. To enable such autonomy, algorithms related to task allocation, path planning, and navigation are required as fundamental technical capabilities. Existing algorithms in these domains have primarily been developed for outdoor environments. However, key technical challenges that prevent the adoption of such algorithms to indoor environments include: a) the inability of the widely adopted outdoor positioning method (Global Positioning System - GPS) to work indoors; and b) the incompleteness of graph networks formed based on indoor environments due to physical access constraints not encountered outdoors. The objective of this dissertation is to develop general and scalable task allocation, path planning, and navigation algorithms for indoor mobile co-robots that are immune to the aforementioned challenges. The primary contributions of this research are: a) route planning and task allocation algorithms for centrally-located mobile co-robots charged with spatiotemporal tasks in arbitrary built environments; b) path planning algorithms that take preferential and pragmatic constraints (e.g., wheelchair ramps) into consideration to determine optimal accessible paths in building environments; and c) navigation and drift correction algorithms for autonomous mobile robotic data collection in buildings. The developed methods and the resulting computational framework have been validated through several simulated experiments and physical deployments in real building environments. Specifically, a scenario analysis is conducted to compare the performance of existing outdoor methods with the developed approach for indoor multi-robotic task allocation and route planning. A simulated case study is performed along with a pilot experiment in an indoor built environment to test the efficiency of the path planning algorithm and the performance of the assisted navigation interface developed considering people with physical disabilities (i.e., wheelchair users) as building occupants and visitors. Furthermore, a case study is performed to demonstrate the informed retrofit decision-making process with the help of data collected by an intelligent multi-sensor fused robot that is subsequently used in an EnergyPlus simulation. The results demonstrate the feasibility of the proposed methods in a range of applications involving constraints on both the environment (e.g., path obstructions) and robot capabilities (e.g., maximum travel distance on a single charge). By focusing on the technical capabilities required for safe and efficient indoor robot operation, this dissertation contributes to the fundamental science that will make mobile co-robots ubiquitous in building environments in the near future.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143969/1/baddu_1.pd
    corecore