1,417 research outputs found

    Time-Sliced temporal evidential networks : the case of evidential HMM with application to dynamical system analysis.

    No full text
    International audienceDiagnostics and prognostics of health states are important activities in the maintenance process strategy of dynamical systems. Many approaches have been developed for this purpose and we particularly focus on data-driven methods which are increasingly applied due to the availability of various cheap sensors. Most data-driven methods proposed in the literature rely on probability density estimation. However, when the training data are limited, the estimated parameters are no longer reliable. This is particularly true for data in faulty states which are generally expensive and difficult to obtain. In order to solve this problem, we propose to use the theory of belief functions as described by Dempster, Shafer (Theory of Evidence) and Smets (Transferable Belief Model). A few methods based on belief functions have been proposed for diagnostics and prognostics of dynamical systems. Among these methods, Evidential Hidden Markov Models (EvHMM) seems promising and extends usual HMM to belief functions. Inference tools in EvHMM have already been developed, but parameter training has not fully been considered until now or only with strong assumptions. In this paper, we propose to complete the generalization of HMM to belief functions with a method for automatic parameter training. The generalization of this training procedure to more general Time-Sliced Temporal Evidential Network (TSTEN) is discussed paving the way for a further generalization of Dynamic Bayesian Network to belief functions with potential applications to diagnostics and prognostics. An application to time series classification is proposed

    Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions.

    No full text
    International audienceCondition-based maintenance is nowadays considered as a key-process in maintenance strategies and prognostics appears to be a very promising activity as it should permit to not engage inopportune spending. Various approaches have been developed and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets since a lot of methods rely on probability theory and/or on artificial neural networks. This step is thus time-consuming and generally made in batch mode which can be restrictive in practical application when few data are available. A method for prognostics is proposed to face up this problem of lack of information and missing prior knowledge. The approach is based on the integration of three complementary modules and aims at predicting the failure mode early while the system can switch between several functioning modes. The three modules are: 1) observation selection based on information theory and Choquet Integral, 2) prediction relying on an evolving real-time neuro-fuzzy system and 3) classification into one of the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory. Experiments concern the prediction of an engine health based on more than twenty observations

    E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications.

    No full text
    International audienceNonlinear dynamical systems identification and behavior prediction are di cult problems encountered in many areas of industrial applications such as fault diagnosis and prognosis. In practice, the analytical description of a nonlinear system directly from observed data is a very challenging task because of the the too large number of the related parameters to be estimated. As a solution, multi-modeling approaches have lately been applied and consist in dividing the operating range of the system under study into di erent operating regions easier to describe by simpler functions to be combined. In order to take into consideration the uncertainty related to the available data as well as the uncertainty resulting from the nonlinearity of the system, evidence theory is of particular interest, because it permits the explicit modeling of doubt and ignorance. In the context of multi-modeling, information of doubt may be exploited to properly segment the data and take into account the uncertainty in the transitions between the operating regions. Recently, the Evidential Evolving Gustafson-Kessel algorithm (E2GK) has been proposed to ensure an online partitioning of the data into clusters that correspond to operating regions. Based on E2GK, a multi-modeling approach called E2GKpro is introduced in this paper, which dynamically performs the estimation of the local models by upgrading and modifying their parameters while data arrive. The proposed algorithm is tested on several datasets and compared to existing approaches. The results show that the use of virtual centroids in E2GKpro account for its robustness to noise and generating less operating regions while ensuring precise predictions

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Joint Prediction of Continuous and Discrete States in Time-Series Based on Belief Functions.

    No full text
    International audienceForecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system

    Joint prediction of observations and states in time-series based on belief functions

    No full text
    International audienceForecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system
    • …
    corecore