1,014 research outputs found

    On the normality of pp-ary bent functions

    Full text link
    Depending on the parity of nn and the regularity of a bent function ff from Fpn\mathbb F_p^n to Fp\mathbb F_p, ff can be affine on a subspace of dimension at most n/2n/2, (n1)/2(n-1)/2 or n/21n/2- 1. We point out that many pp-ary bent functions take on this bound, and it seems not easy to find examples for which one can show a different behaviour. This resembles the situation for Boolean bent functions of which many are (weakly) n/2n/2-normal, i.e. affine on a n/2n/2-dimensional subspace. However applying an algorithm by Canteaut et.al., some Boolean bent functions were shown to be not n/2n/2- normal. We develop an algorithm for testing normality for functions from Fpn\mathbb F_p^n to Fp\mathbb F_p. Applying the algorithm, for some bent functions in small dimension we show that they do not take on the bound on normality. Applying direct sum of functions this yields bent functions with this property in infinitely many dimensions.Comment: 13 page

    Proofs of two conjectures on ternary weakly regular bent functions

    Full text link
    We study ternary monomial functions of the form f(x)=\Tr_n(ax^d), where x\in \Ff_{3^n} and \Tr_n: \Ff_{3^n}\to \Ff_3 is the absolute trace function. Using a lemma of Hou \cite{hou}, Stickelberger's theorem on Gauss sums, and certain ternary weight inequalities, we show that certain ternary monomial functions arising from \cite{hk1} are weakly regular bent, settling a conjecture of Helleseth and Kholosha \cite{hk1}. We also prove that the Coulter-Matthews bent functions are weakly regular.Comment: 20 page

    (2^n,2^n,2^n,1)-relative difference sets and their representations

    Full text link
    We show that every (2n,2n,2n,1)(2^n,2^n,2^n,1)-relative difference set DD in Z4n\Z_4^n relative to Z2n\Z_2^n can be represented by a polynomial f(x)\in \F_{2^n}[x], where f(x+a)+f(x)+xaf(x+a)+f(x)+xa is a permutation for each nonzero aa. We call such an ff a planar function on \F_{2^n}. The projective plane Π\Pi obtained from DD in the way of Ganley and Spence \cite{ganley_relative_1975} is coordinatized, and we obtain necessary and sufficient conditions of Π\Pi to be a presemifield plane. We also prove that a function ff on \F_{2^n} with exactly two elements in its image set and f(0)=0f(0)=0 is planar, if and only if, f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for any x,y\in\F_{2^n}

    Semifields, relative difference sets, and bent functions

    Full text link
    Recently, the interest in semifields has increased due to the discovery of several new families and progress in the classification problem. Commutative semifields play an important role since they are equivalent to certain planar functions (in the case of odd characteristic) and to modified planar functions in even characteristic. Similarly, commutative semifields are equivalent to relative difference sets. The goal of this survey is to describe the connection between these concepts. Moreover, we shall discuss power mappings that are planar and consider component functions of planar mappings, which may be also viewed as projections of relative difference sets. It turns out that the component functions in the even characteristic case are related to negabent functions as well as to Z4\mathbb{Z}_4-valued bent functions.Comment: Survey paper for the RICAM workshop "Emerging applications of finite fields", 09-13 December 2013, Linz, Austria. This article will appear in the proceedings volume for this workshop, published as part of the "Radon Series on Computational and Applied Mathematics" by DeGruyte

    A new family of semifields with 2 parameters

    Get PDF
    A new family of commutative semifields with two parameters is presented. Its left and middle nucleus are both determined. Furthermore, we prove that for any different pairs of parameters, these semifields are not isotopic. It is also shown that, for some special parameters, one semifield in this family can lead to two inequivalent planar functions. Finally, using similar construction, new APN functions are given
    corecore