13 research outputs found

    Todd-Coxeter methods for inverse monoids

    Get PDF
    Let P be the inverse monoid presentation (X|U) for the inverse monoid M, let π be the set of generators for a right congruence on M and let u Є M. Using the work of J. Stephen [15], the current work demonstrates a coset enumeration technique for the R-class Rᵤ similar to the coset enumeration algorithm developed by J. A. Todd and H. S. M. Coxeter for groups. Furthermore it is demonstrated how to test whether Rᵤ = Rᵥ, for u, v Є M and so a technique for enumerating inverse monoids is described. This technique is generalised to enumerate the H-classes of M. The algorithms have been implemented in GAP 3.4.4 [25], and have been used to analyse some examples given in Chapter 6. The thesis concludes by a related discussion of normal forms and automaticity of free inverse semigroups

    Identities and bases in plactic, hypoplactic, sylvester, and related monoids

    Get PDF
    The ubiquitous plactic monoid, also known as the monoid of Young tableaux, has deep connections to several areas of mathematics, in particular, to the theory of symmetric functions. An active research topic is the identities satisfied by the plactic monoids of finite rank. It is known that there is no “global" identity satisfied by the plactic monoid of every rank. In contrast, monoids related to the plactic monoid, such as the hypoplactic monoid (the monoid of quasi-ribbon tableaux), sylvester monoid (the monoid of binary search trees) and Baxter monoid (the monoid of pairs of twin binary search trees), satisfy global identities, and the shortest identities have been characterized. In this thesis, we present new results on the identities satisfied by the hypoplactic, sylvester, #-sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This confirms that all monoids of the same family, of rank greater than or equal to 2, satisfy exactly the same identities. We then give a complete characterization of those identities, thus showing that the identity checking problems of these monoids are in the complexity class P, and prove that the varieties generated by these monoids have finite axiomatic rank, by giving a finite basis for them. We also give a subdirect representation ofmultihomogeneous monoids by finite subdirectly irreducible Rees factor monoids, thus showing that they are residually finite.O ubíquo monóide plático, também conhecido como o monóide dos diagramas de Young, tem ligações profundas a várias áreas de Matemática, em particular à teoria das funções simétricas. Um tópico de pesquisa ativo é o das identidades satisfeitas pelos monóides pláticos de característica finita. Sabe-se que não existe nenhuma identidade “global” satisfeita pelos monóides pláticos de cada característica. Em contraste, sabe-se que monóides ligados ao monóide plático, como o monóide hipoplático (o monóide dos diagramas quasifita), o monóide silvestre (o monóide de árvores de busca binárias) e o monóide de Baxter (o monóide de pares de árvores de busca binária gémeas), satisfazem identidades globais, e as identidades mais curtas já foram caracterizadas. Nesta tese, apresentamos novos resultados acerca das identidades satisfeitas pelos monóides hipopláticos, silvestres, silvestres-# e de Baxter. Mostramos como mergulhar estes monóides, de característica estritamente maior que 2, num produto direto de cópias do monóide correspondente de característica 2. Confirmamos assim que todos os monóides da mesma família, de característica maior ou igual a 2, satisfazem exatamente as mesmas identidades. A seguir, damos uma caracterização completa dessas identidades, mostrando assim que os problemas de verificação de identidades destes monóides estão na classe de complexidade P, e provamos que as variedades geradas por estes monóides têm característica axiomática finita, ao apresentar uma base finita para elas. Também damos uma representação subdireta de monóides multihomogéneos por monóides fatores de Rees finitos e subdiretamente irredutíveis, mostrando assim que são residualmente finitos

    Algebraic hierarchical decomposition of finite state automata : a computational approach

    Get PDF
    The theory of algebraic hierarchical decomposition of finite state automata is an important and well developed branch of theoretical computer science (Krohn-Rhodes Theory). Beyond this it gives a general model for some important aspects of our cognitive capabilities and also provides possible means for constructing artificial cognitive systems: a Krohn-Rhodes decomposition may serve as a formal model of understanding since we comprehend the world around us in terms of hierarchical representations. In order to investigate formal models of understanding using this approach, we need efficient tools but despite the significance of the theory there has been no computational implementation until this work. Here the main aim was to open up the vast space of these decompositions by developing a computational toolkit and to make the initial steps of the exploration. Two different decomposition methods were implemented: the VuT and the holonomy decomposition. Since the holonomy method, unlike the VUT method, gives decompositions of reasonable lengths, it was chosen for a more detailed study. In studying the holonomy decomposition our main focus is to develop techniques which enable us to calculate the decompositions efficiently, since eventually we would like to apply the decompositions for real-world problems. As the most crucial part is finding the the group components we present several different ways for solving this problem. Then we investigate actual decompositions generated by the holonomy method: automata with some spatial structure illustrating the core structure of the holonomy decomposition, cases for showing interesting properties of the decomposition (length of the decomposition, number of states of a component), and the decomposition of finite residue class rings of integers modulo n. Finally we analyse the applicability of the holonomy decompositions as formal theories of understanding, and delineate the directions for further research

    Discrete Clifford analysis

    Get PDF
    Doutoramento em MatemáticaEsta tese estuda os fundamentos de uma teoria discreta de funções em dimensões superiores usando a linguagem das Álgebras de Clifford. Esta abordagem combina as ideias do Cálculo Umbral e Formas Diferenciais. O potencial desta abordagem assenta essencialmente da osmose entre ambas as linguagens. Isto permitiu a construção de operadores de entrelaçamento entre estruturas contínuas e discretas, transferindo resultados conhecidos do contínuo para o discreto. Adicionalmente, isto resultou numa transcrição mimética de bases de polinómios, funções geradoras, Decomposição de Fischer, Lema de Poincaré, Teorema de Stokes, fórmula de Cauchy e fórmula de Borel-Pompeiu. Esta teoria também inclui a descrição dos homólogos discretos de formas diferenciais, campos vectores e integração discreta. De facto, a construção resultante de formas diferenciais, campos vectores e integração discreta em termos de coordenadas baricêntricas conduz à correspondência entre a teoria de Diferenças Finitas e a teoria de Elementos Finitos, dando um núcleo de aplicações desta abordagem promissora em análise numérica. Algumas ideias preliminares deste ponto de vista foram apresentadas nesta tese. Também foram apresentados resultados preliminares na teoria discreta de funções em complexos envolvendo simplexes. Algumas ligações com Combinatória e Mecânica Quântica foram também apresentadas ao longo desta tese.This thesis studies the fundamentals of a higher dimensional discrete function theory using the Clifford Algebra setting. This approach combines the ideas of Umbral Calculus and Differential Forms. Its powerful rests mostly on the interplay between both languages. This allowed the construction of intertwining operators between continuous and discrete structures, lifting the well known results from continuum to discrete. Furthermore, this resulted in a mimetic transcription of basis polynomial, generating functions, Fischer Decomposition, Poincaré and dual-Poincaré lemmata, Stokes theorem and Cauchy’s formula. This theory also includes the description discrete counterparts of differential forms, vector-fields and discrete integration. Indeed the resulted construction of discrete differential forms, discrete vector-fields and discrete integration in terms of barycentric coordinates leads to the correspondence between the theory of Finite Differences and the theory of Finite Elements, which gives a core of promising applications of this approach in numerical analysis. Some preliminary ideas on this point of view were presented in this thesis. We also developed some preliminary results in the theory of discrete monogenic functions on simplicial complexes. Some connections with Combinatorics and Quantum Mechanics were also presented along this thesis

    Wavelets on Lie groups and homogeneous spaces

    Get PDF
    Within the past decades, wavelets and associated wavelet transforms have been intensively investigated in both applied and pure mathematics. They and the related multi-scale analysis provide essential tools to describe, analyse and modify signals, images or, in rather abstract concepts, functions, function spaces and associated operators. We introduce the concept of diffusive wavelets where the dilation operator is provided by an evolution like process that comes from an approximate identity. The translation operator is naturally defined by a regular representation of the Lie group where we want to construct wavelets. For compact Lie groups the theory can be formulated in a very elegant way and also for homogeneous spaces of those groups we formulate the theory in the theory of non-commutative harmonic analysis. Explicit realisation are given for the Rotation group SO(3), the k-Torus, the Spin group and the n-sphere as homogeneous space. As non compact example we discuss diffusive wavelets on the Heisenberg group, where the construction succeeds thanks to existence of the Plancherel measure for this group. The last chapter is devoted to the Radon transform on SO(3), where the application on diffusive wavelets can be used for its inversion. The discussion of a variational spline approach provides criteria for the choice of points for measurements in concrete applications

    Wavelets on Lie groups and homogeneous spaces

    Get PDF
    Within the past decades, wavelets and associated wavelet transforms have been intensively investigated in both applied and pure mathematics. They and the related multi-scale analysis provide essential tools to describe, analyse and modify signals, images or, in rather abstract concepts, functions, function spaces and associated operators. We introduce the concept of diffusive wavelets where the dilation operator is provided by an evolution like process that comes from an approximate identity. The translation operator is naturally defined by a regular representation of the Lie group where we want to construct wavelets. For compact Lie groups the theory can be formulated in a very elegant way and also for homogeneous spaces of those groups we formulate the theory in the theory of non-commutative harmonic analysis. Explicit realisation are given for the Rotation group SO(3), the k-Torus, the Spin group and the n-sphere as homogeneous space. As non compact example we discuss diffusive wavelets on the Heisenberg group, where the construction succeeds thanks to existence of the Plancherel measure for this group. The last chapter is devoted to the Radon transform on SO(3), where the application on diffusive wavelets can be used for its inversion. The discussion of a variational spline approach provides criteria for the choice of points for measurements in concrete applications

    The 2nd Conference of PhD Students in Computer Science

    Get PDF
    corecore