1,407 research outputs found

    Roman domination number of Generalized Petersen Graphs P(n,2)

    Full text link
    A Roman domination functionRoman\ domination\ function on a graph G=(V,E)G=(V, E) is a function f:V(G)→{0,1,2}f:V(G)\rightarrow\{0,1,2\} satisfying the condition that every vertex uu with f(u)=0f(u)=0 is adjacent to at least one vertex vv with f(v)=2f(v)=2. The weightweight of a Roman domination function ff is the value f(V(G))=∑u∈V(G)f(u)f(V(G))=\sum_{u\in V(G)}f(u). The minimum weight of a Roman dominating function on a graph GG is called the Roman domination numberRoman\ domination\ number of GG, denoted by γR(G)\gamma_{R}(G). In this paper, we study the {\it Roman domination number} of generalized Petersen graphs P(n,2) and prove that γR(P(n,2))=⌈8n7⌉(n≥5)\gamma_R(P(n,2)) = \lceil {\frac{8n}{7}}\rceil (n \geq 5).Comment: 9 page

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that u∈Xiu\in X_{i}, v∈Xjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k≥1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k≥2k\geq 2. First we prove that n(G)k≤γ×k,t(GI)≤n(G)(k+1)−1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of G−eG-e or vv-components of G−vG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs
    • …
    corecore