9,637 research outputs found

    Traffic Analysis in Random Delaunay Tessellations and Other Graphs

    Full text link
    In this work we study the degree distribution, the maximum vertex and edge flow in non-uniform random Delaunay triangulations when geodesic routing is used. We also investigate the vertex and edge flow in Erd\"os-Renyi random graphs, geometric random graphs, expanders and random kk-regular graphs. Moreover we show that adding a random matching to the original graph can considerably reduced the maximum vertex flow.Comment: Submitted to the Journal of Discrete Computational Geometr

    The simplicity of planar networks

    Get PDF
    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.Comment: 8 pages, 4 figure

    Degree distribution of shortest path trees and bias of network sampling algorithms

    Get PDF
    In this article, we explicitly derive the limiting degree distribution of the shortest path tree from a single source on various random network models with edge weights. We determine the asymptotics of the degree distribution for large degrees of this tree and compare it to the degree distribution of the original graph. We perform this analysis for the complete graph with edge weights that are powers of exponential random variables (weak disorder in the stochastic mean-field model of distance), as well as on the configuration model with edge-weights drawn according to any continuous distribution. In the latter, the focus is on settings where the degrees obey a power law, and we show that the shortest path tree again obeys a power law with the same degree power-law exponent. We also consider random rr-regular graphs for large rr, and show that the degree distribution of the shortest path tree is closely related to the shortest path tree for the stochastic mean-field model of distance. We use our results to shed light on an empirically observed bias in network sampling methods. This is part of a general program initiated in previous works by Bhamidi, van der Hofstad and Hooghiemstra [Ann. Appl. Probab. 20 (2010) 1907-1965], [Combin. Probab. Comput. 20 (2011) 683-707], [Adv. in Appl. Probab. 42 (2010) 706-738] of analyzing the effect of attaching random edge lengths on the geometry of random network models.Comment: Published at http://dx.doi.org/10.1214/14-AAP1036 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Transitions in spatial networks

    Get PDF
    Networks embedded in space can display all sorts of transitions when their structure is modified. The nature of these transitions (and in some cases crossovers) can differ from the usual appearance of a giant component as observed for the Erdos-Renyi graph, and spatial networks display a large variety of behaviors. We will discuss here some (mostly recent) results about topological transitions, `localization' transitions seen in the shortest paths pattern, and also about the effect of congestion and fluctuations on the structure of optimal networks. The importance of spatial networks in real-world applications makes these transitions very relevant and this review is meant as a step towards a deeper understanding of the effect of space on network structures.Comment: Corrected version and updated list of reference
    corecore