3,970 research outputs found

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure

    Structure-Aware Sampling: Flexible and Accurate Summarization

    Full text link
    In processing large quantities of data, a fundamental problem is to obtain a summary which supports approximate query answering. Random sampling yields flexible summaries which naturally support subset-sum queries with unbiased estimators and well-understood confidence bounds. Classic sample-based summaries, however, are designed for arbitrary subset queries and are oblivious to the structure in the set of keys. The particular structure, such as hierarchy, order, or product space (multi-dimensional), makes range queries much more relevant for most analysis of the data. Dedicated summarization algorithms for range-sum queries have also been extensively studied. They can outperform existing sampling schemes in terms of accuracy on range queries per summary size. Their accuracy, however, rapidly degrades when, as is often the case, the query spans multiple ranges. They are also less flexible - being targeted for range sum queries alone - and are often quite costly to build and use. In this paper we propose and evaluate variance optimal sampling schemes that are structure-aware. These summaries improve over the accuracy of existing structure-oblivious sampling schemes on range queries while retaining the benefits of sample-based summaries: flexible summaries, with high accuracy on both range queries and arbitrary subset queries

    Robust Adaptive Least Squares Polynomial Chaos Expansions in High-Frequency Applications

    Full text link
    We present an algorithm for computing sparse, least squares-based polynomial chaos expansions, incorporating both adaptive polynomial bases and sequential experimental designs. The algorithm is employed to approximate stochastic high-frequency electromagnetic models in a black-box way, in particular, given only a dataset of random parameter realizations and the corresponding observations regarding a quantity of interest, typically a scattering parameter. The construction of the polynomial basis is based on a greedy, adaptive, sensitivity-related method. The sequential expansion of the experimental design employs different optimality criteria, with respect to the algebraic form of the least squares problem. We investigate how different conditions affect the robustness of the derived surrogate models, that is, how much the approximation accuracy varies given different experimental designs. It is found that relatively optimistic criteria perform on average better than stricter ones, yielding superior approximation accuracies for equal dataset sizes. However, the results of strict criteria are significantly more robust, as reduced variations regarding the approximation accuracy are obtained, over a range of experimental designs. Two criteria are proposed for a good accuracy-robustness trade-off.Comment: 17 pages, 7 figures, 2 table
    • …
    corecore