90 research outputs found

    On the capacity of rate adaptive modulation systems over fading channel

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Interference Removal for Un-coordinated Radar/Communication Co-existence

    Full text link
    Most existing approaches to co-existing communication/radar systems assume that the radar and communication systems are coordinated, i.e., they share information, such as relative position, transmitted waveforms and channel state. In this paper, we consider an un-coordinated scenario where a communication receiver is to operate in the presence of a number of radars, of which only a sub-set may be active, which poses the problem of estimating the active waveforms and the relevant parameters thereof, so as to cancel them prior to demodulation. Two algorithms are proposed for such a joint waveform estimation/data demodulation problem, both exploiting sparsity of a proper representation of the interference and of the vector containing the errors of the data block, so as to implement an iterative joint interference removal/data demodulation process. The former algorithm is based on classical on-grid compressed sensing (CS), while the latter forces an atomic norm (AN) constraint: in both cases the radar parameters and the communication demodulation errors can be estimated by solving a convex problem. We also propose a way to improve the efficiency of the AN-based algorithm. The performance of these algorithms are demonstrated through extensive simulations, taking into account a variety of conditions concerning both the interferers and the respective channel states

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    A decentralized spectrum allocation and partitioning scheme for a two-tier macro-femtocell network with downlink beamforming

    Get PDF
    This article examines spectrum allocation and partitioning schemes to mitigate cross-tier interference under downlink beamforming environments. The enhanced SIR owing to beamforming allows more femtocells to share their spectrum with the macrocell and accordingly improves overall spectrum efficiency. We first design a simplified centralized scheme as the optimum and then propose a practical decentralized algorithm that determines which femtocells to use the full or partitioned spectrum with acceptable control overhead. To exploit limited information of the received signal strength efficiently, we consider two types of probabilistic femtocell base station (HeNB) selection policies. They are equal selection and interference weighted selection policies, and we drive their outage probabilities for a macrocell user. Through performance evaluation, we demonstrate that the outage probability and the cell capacity in our decentralized scheme are significantly better than those in a conventional cochannel deployment scheme. Furthermore, we show that the cell utility in our proposed scheme is close to that in the centralized scheme and better than that in the spectrum partitioning scheme with a fixed ratio.open0

    On the performance and capacity of space-time block coded multicarrier CDMA communication systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The application of SOA for dispersion management of 2D-WH/TS codesin incoherent OCDMA system

    Get PDF
    In high data rate optical fibre communication networks, dispersion phenomenon plays a pivotal role. It is important to investigate the dispersion effects in a multi-wavelength picosecond optical code division multiple access (OCDMA) system. This research is focused on the analysis of the effects of fibre dispersion on the OCDMA autocorrelation; and how these effects can be resolved in a tuneable way so that the originally recovered OCDMA autocorrelation function at the decoder receiver can be revived without further manual adjustment of fibre (SMF-28) cable lengths.;The environmental effects and the subsequent mitigation process are also investigated further in this research. The chirp in OCDMA is examined experimentally and analytically in an initiative to find the more in-depth understanding of finely tuneable chromatic dispersion (CD) compensation technique in a coarsely compensated link by using semiconductor optical amplifier (SOA). A practical investigation was carried over a partially CD compensated 17 km bidirectional testbed between the University of Strathclyde and the University of Glasgow to perform the fine-tuning of CD adjustment using SOA.;A 19.5 km SMF-28 fibre spool was also used in an environmental chamber to investigate the temperature induced dispersion effects and subsequent mitigation. The tuneable dispersion compensation measures are vital to ensure the high data rate optical communication using an all-optical approach in future data network end-points where the advantages of ultra-high speed optical communication bandwidth are at present disrupted due to opto-electronic conversions commonly known as 'electronic bottlenecks'.In high data rate optical fibre communication networks, dispersion phenomenon plays a pivotal role. It is important to investigate the dispersion effects in a multi-wavelength picosecond optical code division multiple access (OCDMA) system. This research is focused on the analysis of the effects of fibre dispersion on the OCDMA autocorrelation; and how these effects can be resolved in a tuneable way so that the originally recovered OCDMA autocorrelation function at the decoder receiver can be revived without further manual adjustment of fibre (SMF-28) cable lengths.;The environmental effects and the subsequent mitigation process are also investigated further in this research. The chirp in OCDMA is examined experimentally and analytically in an initiative to find the more in-depth understanding of finely tuneable chromatic dispersion (CD) compensation technique in a coarsely compensated link by using semiconductor optical amplifier (SOA). A practical investigation was carried over a partially CD compensated 17 km bidirectional testbed between the University of Strathclyde and the University of Glasgow to perform the fine-tuning of CD adjustment using SOA.;A 19.5 km SMF-28 fibre spool was also used in an environmental chamber to investigate the temperature induced dispersion effects and subsequent mitigation. The tuneable dispersion compensation measures are vital to ensure the high data rate optical communication using an all-optical approach in future data network end-points where the advantages of ultra-high speed optical communication bandwidth are at present disrupted due to opto-electronic conversions commonly known as 'electronic bottlenecks'

    Investigation of the impact of fibre impairments and SOA-based devices on 2D-WH/TS OCDMA codes

    Get PDF
    In seeking efficient last-mile solutions for high-capacity, optical code division multiple access (OCDMA) emerges as a promising alternative high-speed optical network that can securely support a multitude of simultaneous users without requiring extensive equipment. This multiplexing technique has recently been the subject of comprehensive research, highlighting its potential for facilitating high-bandwidth multi-access networking. When contrasted with techniques such as wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM), OCDMA offers a more effective and equitable split of available fibre bandwidth among the users. This thesis presents my research focused on the incoherent OCDMA under the influence of optical fibre impairments that uses picosecond multiwavelength pulses to form two-dimensional wavelength hopping time-spreading (2D-WH/TS) incoherent OCDMA codes. In particular, self-phase modulation, temperature induced fibre dispersion, chromatic dispersion, as well as the impact of semiconductor optical amplifier SOA devices deployment on 2D-WH/TS OCDMA code integrity were investigated. These aspects were investigated using a 17-km long bidirectional fibre link between Strathclyde and Glasgow University. In particular, I investigated the impact of temporal skewing among OCDMA code carriers and the importance of selecting small range of wavelengths as code carriers where wide range manifest high dependency on wavelength. This wavelength dependency is exploited furthermore to measure the induced temperature dispersion coefficient accurately and economically. I have conducted experiments to characterise the impact of SOA-device on 2D OCDMA code carries which is evaluated under different bias conditions. This evaluation addressed the potential challenges and ramifications of the gain recovery time of SOA and its wavelength dependency with respect to gain ratio and self-phase modulation (SPM). The OCDMA code was built using multiplexers and delay lines to create a 2D OCDMA code to allow studying the impact of deploying a SOA under different conditions on each wavelength. The concept described above is then extended to the investigation of the SOA’s impact on a 2D-WH/TS OCDMA prime code under high bias current/gain conditions. The overall performance of two different 2D-WH/TS OCDMA systems deploying the SOA was also calculated. I have also investigated the possibility of manipulating chirp in 2D-WH/TS incoherent OCDMA to counteract the self-phase modulation-induced red shift by using single mode fibre and lithium crystals. I have investigated the performance of the picosecond code based optical signal when subjected to temperature variations similar to that experience by most buried fibre systems. I have proposed and demonstrated a novel technique, which I examined analytically and experimentally, that utilises a SOA at the transmitter to create a new code with a new wavelength hopping and spreading time sequences to achieve a unique physical improved secure incoherent OCDMA communication method. A novel fully automated tuneable compensation testbed is also proposed of an autonomous dispersion management in a WH/TS incoherent OCDMA system. The system proposed manipulates the chirp of OCDMA code carriers to limit chromatic dispersion detrimental effect on transmission systems.In seeking efficient last-mile solutions for high-capacity, optical code division multiple access (OCDMA) emerges as a promising alternative high-speed optical network that can securely support a multitude of simultaneous users without requiring extensive equipment. This multiplexing technique has recently been the subject of comprehensive research, highlighting its potential for facilitating high-bandwidth multi-access networking. When contrasted with techniques such as wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM), OCDMA offers a more effective and equitable split of available fibre bandwidth among the users. This thesis presents my research focused on the incoherent OCDMA under the influence of optical fibre impairments that uses picosecond multiwavelength pulses to form two-dimensional wavelength hopping time-spreading (2D-WH/TS) incoherent OCDMA codes. In particular, self-phase modulation, temperature induced fibre dispersion, chromatic dispersion, as well as the impact of semiconductor optical amplifier SOA devices deployment on 2D-WH/TS OCDMA code integrity were investigated. These aspects were investigated using a 17-km long bidirectional fibre link between Strathclyde and Glasgow University. In particular, I investigated the impact of temporal skewing among OCDMA code carriers and the importance of selecting small range of wavelengths as code carriers where wide range manifest high dependency on wavelength. This wavelength dependency is exploited furthermore to measure the induced temperature dispersion coefficient accurately and economically. I have conducted experiments to characterise the impact of SOA-device on 2D OCDMA code carries which is evaluated under different bias conditions. This evaluation addressed the potential challenges and ramifications of the gain recovery time of SOA and its wavelength dependency with respect to gain ratio and self-phase modulation (SPM). The OCDMA code was built using multiplexers and delay lines to create a 2D OCDMA code to allow studying the impact of deploying a SOA under different conditions on each wavelength. The concept described above is then extended to the investigation of the SOA’s impact on a 2D-WH/TS OCDMA prime code under high bias current/gain conditions. The overall performance of two different 2D-WH/TS OCDMA systems deploying the SOA was also calculated. I have also investigated the possibility of manipulating chirp in 2D-WH/TS incoherent OCDMA to counteract the self-phase modulation-induced red shift by using single mode fibre and lithium crystals. I have investigated the performance of the picosecond code based optical signal when subjected to temperature variations similar to that experience by most buried fibre systems. I have proposed and demonstrated a novel technique, which I examined analytically and experimentally, that utilises a SOA at the transmitter to create a new code with a new wavelength hopping and spreading time sequences to achieve a unique physical improved secure incoherent OCDMA communication method. A novel fully automated tuneable compensation testbed is also proposed of an autonomous dispersion management in a WH/TS incoherent OCDMA system. The system proposed manipulates the chirp of OCDMA code carriers to limit chromatic dispersion detrimental effect on transmission systems
    • …
    corecore