2,986 research outputs found

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    T-WAS and T-XAS algorithms for fiber-loop optical buffers

    No full text
    In optical packet/burst switched networks fiber loops provide a viable and compact means of contention resolution. For fixed size packets it is known that a basic void-avoiding schedule (VAS) can vastly outperform a more classical pre-reservation algorithm as FCFS. For the setting of a uniform distributed packet size and a restricted buffer size we proposed two novel forward-looking algorithms, WAS and XAS, that, in specific settings, outperform VAS up to 20% in terms of packet loss. This contribution extends the usage and improves the performance of the WAS and XAS algorithms by introducing an additional threshold variable. By optimizing this threshold, the process of selectively delaying packet longer than strictly necessary can be made more or less strict and as such be fitted to each setting. By Monte Carlo simulation it is shown that the resulting T-WAS and T-XAS algorithms are most effective for those instances where the algorithms without threshold can offer no or only limited performance improvement

    A multi-exit recirculating optical packet buffer

    Get PDF
    We propose a new type of recirculating buffer, the multiexit buffer (MEB), for use in asynchronous optical packet switches with statistical multiplexing, operating at speeds of 40-100 Gb/s. We demonstrate that the use of this type of buffer dramatically reduces the packet loss for a given buffer depth, thus reducing the buffer depth requirements and the overall cost of the optical packet switching. Physical layer simulation results show that it is possible to build this type of buffer with currently available active components. A hybrid optoelectronic control system is proposed, which allows control of the MEB with a minimum number of active components

    Equivalent random analysis of a buffered optical switch with general interarrival times

    Get PDF
    We propose an approximate analytic model of an optical switch with fibre delay lines and wavelength converters by employing Equivalent Random Theory. General arrival traffic is modelled by means of Gamma-distributed interarrival times. The analysis is formulated in terms of virtual traffic flows within the optical switch from which we derive expressions for burst blocking probability, fibre delay line occupancy and mean delay. Emphasis is on approximations that give good numerical efficiency so that the method can be useful for formulating dimensioning problems for large-scale networks. Numerical solution values from the proposed analysis method compare well with results from a discrete-event simulation of an optical burst switch

    Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times

    Get PDF
    Providing a photonic alternative to the current electronic switching in the backbone, optical packet switching (OPS) and optical bursts witching (OBS) require optical buffering. Optical buffering exploits delays in long optical fibers; an optical buffer is implemented by routing packets through a set of fiber delay lines (FDLs). Previous studies pointed out that, in comparison with electronic buffers, optical buffering suffers from an additional performance degradation. This contribution builds on this observation by studying optical buffer performance under more general traffic assumptions. Features of the optical buffer model under consideration include a Markovian arrival process, general burst sizes and a finite set of fiber delay lines of arbitrary length. Our algorithmic approach yields instant analytic results for important performance measures such as the burst loss ratio and the mean delay
    corecore