853 research outputs found

    Toward a Programmable FIB Caching Architecture

    Full text link
    The current Internet routing ecosystem is neither sustainable nor economical. More than 711K IPv4 routes and more than 41K IPv6 routes exist in current global Forwarding Information Base (FIBs) with growth rates increasing. This rapid growth has serious consequences, such as creating the need for costly FIB memory upgrades and increased potential for Internet service outages. And while FIB memories are power-hungry and prohibitively expensive, more than 70\% of the routes in FIBs carry no traffic for long time periods, a wasteful use of these expensive resources. Taking advantage of the emerging concept of programmable data plane, we design a programmable FIB caching architecture to address the existing concerns. Our preliminary evaluation results show that the architecture can significantly mitigate the global routing scalability and poor FIB utilization issues

    Towards generic satellite payloads: software radio

    Get PDF
    Satellite payloads are becoming much more complex with the evolution towards multimedia applications. Moreover satellite lifetime increases while standard and services evolve faster, necessitating a hardware platform that can evolves for not developing new systems on each change. The same problem occurs in terrestrial systems like mobile networks and a foreseen solution is the software defined radio technology. In this paper we describe a way of introducing this concept at satellite level to offer to operators the required flexibility in the system. The digital functions enabling this technology, the hardware components implementing the functions and the reconfiguration processes are detailed. We show that elements of the software radio for satellites exist and that this concept is feasible

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    ENERGY EFFICIENT WIRED NETWORKING

    Get PDF
    This research proposes a new dynamic energy management framework for a backbone Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) network. Maintaining the logical IP-layer topology is a key constraint of our architecture whilst saving energy by infrastructure sleeping and virtual router migration. The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based on people‟s activities, which is high in working hours and much lighter during hours associated with sleep. When the traffic demand is light, virtual router instances can be consolidated to a smaller set of physical platforms and the unneeded physical platforms can be put to sleep to save energy. As the traffic demand increases the sleeping physical platforms can be re-awoken in order to host virtual router instances and so maintain quality of service. Since the IP-layer topology remains unchanged throughout virtual router migration in our framework, there is no network disruption or discontinuities when the physical platforms enter or leave hibernation. However, this migration places extra demands on the optical layer as additional connections are needed to preserve the logical IP-layer topology whilst forwarding traffic to the new virtual router location. Consequently, dynamic optical connection management is needed for the new framework. Two important issues are considered in the framework, i.e. when to trigger the virtual router migration and where to move virtual router instances to? For the first issue, a reactive mechanism is used to trigger the virtual router migration by monitoring the network state. Then, a new evolutionary-based algorithm called VRM_MOEA is proposed for solving the destination physical platform selection problem, which chooses the appropriate location of virtual router instances as traffic demand varies. A novel hybrid simulation platform is developed to measure the performance of new framework, which is able to capture the functionality of the optical layer, the IP layer data-path and the IP/optical control plane. Simulation results show that the performance of network energy saving depends on many factors, such as network topology, quiet and busy thresholds, and traffic load; however, savings of around 30% are possible with typical medium-sized network topologies
    • …
    corecore