26,008 research outputs found

    A self-organized Wireless Sensor Network (WSN) for a home-event managed system: Design of a cost efficient 6LoWPAN-USB gateway with RFID security

    Full text link
    This Thesis investigates the most appropriate choices from a hardware and software design perspective, trying to find a cost-efficient solution for the implementation of a simple and scalable wireless sensor network. The present work goes through the elements that form part of a constrained network and focuses on the design by analysing several network protocol alternatives, radio transmission mechanisms, different hardware devices and software implementations. The construction of a gateway board that starts and coordinates a sensor network is the main target of the thesis. The gateway is connected externally through a USB interface that can be connected to a computer. Inside the WSN, the sensor nodes are connected to the gateway over IEEE 802.15.4 standard for low-power radio based links. The network is designed to be compliant with the TCP/IP stack by means of 6LoWPAN, an adaptation layer protocol used for comprising IPv6 headers. In addition, a small implementation of CoAP (Constrained Application Protocol) is developed that allows interoperability with the sensor nodes on the application layer level. A security mechanism provides packet encryption and identification of nodes by means of RFID reader connected to the gateway and RFID tags attached to the sensor nodes storing security information.Floriano Sánchez, SA. (2015). A self-organized Wireless Sensor Network (WSN) for a home-event managed system: Design of a cost efficient 6LoWPAN-USB gateway with RFID security. http://hdl.handle.net/10251/56609.Archivo delegad

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    Self-management of context-aware overlay ambient networks

    Get PDF
    Ambient Networks (ANs) are dynamically changing and heterogeneous as they consist of potentially large numbers of independent, heterogeneous mobile nodes, with spontaneous topologies that can logically interact with each other to share a common control space, known as the Ambient Control Space. ANs are also flexible i.e. they can compose and decompose dynamically and automatically, for supporting the deployment of cross-domain (new) services. Thus, the AN architecture must be sophisticatedly designed to support such high level of dynamicity, heterogeneity and flexibility. We advocate the use of service specific overlay networks in ANs, that are created on-demand according to specific service requirements, to deliver, and to automatically adapt services to the dynamically changing user and network context. This paper presents a self-management approach to create, configure, adapt, contextualise, and finally teardown service specific overlay networks
    corecore