90,557 research outputs found

    The application of digital techniques to an automatic radar track extraction system

    Get PDF
    'Modern' radar systems have come in for much criticism in recent years, particularly in the aftermath of the Falklands campaign. There have also been notable failures in commercial designs, including the well-publicised 'Nimrod' project which was abandoned due to persistent inability to meet signal processing requirements. There is clearly a need for improvement in radar signal processing techniques as many designs rely on technology dating from the late 1970's, much of which is obsolete by today’s standards. The Durham Radar Automatic Track Extraction System (RATES) is a practical implementation of current microprocessor technology, applied to plot extraction of surveillance radar data. In addition to suggestions for the design of such a system, results are quoted for the predicted performance when compared with a similar product using 1970's design methodology. Suggestions are given for the use of other VLSI techniques in plot extraction, including logic arrays and digital signal processors. In conclusion, there is an illustrated discussion concerning the use of systolic arrays in RATES and a prediction that this will represent the optimum architecture for future high-speed radar signal processors

    Design of Digital FMCW Chirp Synthesizer PLLs Using Continuous-Time Delta-Sigma Time-to-Digital Converters

    Full text link
    Radar applications for driver assistance systems and autonomous vehicles have spurred the development of frequency-modulated continuous-wave (FMCW) radar. Continuous signal transmission and high operation frequencies in the K- and W-bands enable radar systems with low power consumption and small form factors. The radar performance depends on high-quality signal sources for chirp generation to ensure accurate and reliable target detection, requiring chirp synthesizers that offer fast frequency settling and low phase noise. Fractional-N phase locked loops (PLLs) are an effective tool for synthesis of FMCW waveform profiles, and advances in CMOS technology have enabled high-performance single-chip CMOS synthesizers for FMCW radar. Design approaches for FMCW chirp synthesizer PLLs need to address the conflicting requirements of fast settling and low close-in phase noise. While integrated PLLs can be implemented as analog or digital PLLs, analog PLLs still dominate for high frequencies. Digital PLLs offer greater programmability and area efficiency than their analog counterparts, but rely on high-resolution time-to-digital converters (TDCs) for low close-in phase noise. Performance limitations of conventional TDCs remain a roadblock for achieving low phase noise with high-frequency digital PLLs. This shortcoming of digital PLLs becomes even more pronounced with wide loop bandwidths as required for FMCW radar. To address this problem, this work presents digital FMCW chirp synthesizer PLLs using continuous-time delta-sigma TDCs. After a discussion of the requirements for PLL-based FMCW chirp synthesizers, this dissertation focuses on digital fractional-N PLL designs based on noise-shaping TDCs that leverage state-of-the-art delta-sigma modulator techniques to achieve low close-in phase noise in wide-bandwidth digital PLLs. First, an analysis of the PLL bandwidth and chirp linearity studies the design requirements for chirp synthesizer PLLs. Based on a model of a complete radar system, the analysis examines the impact of the PLL bandwidth on the radar performance. The modeling approach allows for a straightforward study of the radar accuracy and reliability as functions of the chirp parameters and the PLL configuration. Next, an 18-to-22GHz chirp synthesizer PLL that produces a 25-segment chirp for a 240GHz FMCW radar application is described. This synthesizer design adapts an existing third-order noise-shaping TDC design. A 65nm CMOS prototype achieves a measured close-in phase noise of -88dBc/Hz at 100kHz offset for wide PLL bandwidths and consumes 39.6mW. The prototype drives a radar testbed to demonstrate the effectiveness of the synthesizer design in a complete radar system. Finally, a second-order noise-shaping TDC based on a fourth-order bandpass delta-sigma modulator is introduced. This bandpass delta-sigma TDC leverages the high resolution of a bandpass delta-sigma modulator by sampling a sinusoidal PLL reference and applies digital down-conversion to achieve low TDC noise in the frequency band of interest. Based on the bandpass delta-sigma TDC, a 38GHz digital FMCW chirp synthesizer PLL is designed. The feedback divider applies phase interpolation with a phase rotation scheme to ensure the effectiveness of the low TDC noise. A prototype PLL, fabricated in 40nm CMOS, achieves a measured close-in phase noise of -85dBc/Hz at 100kHz offset for wide loop bandwidths >1MHz and consumes 68mW. It effectively generates fast (500MHz/55us) and precise (824kHz rms frequency error) triangular chirps for FMCW radar. The bandpass delta-sigma TDC achieves a measured integrated rms noise of 325fs in a 1MHz bandwidth.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147732/1/dweyer_1.pdfDescription of dweyer_1.pdf : Restricted to UM users only

    A portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24x24 Antenna Array for Medium Range Applications

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Multiple-input multiple-output (MIMO) radars have been shown to improve target detection for surveillance applications thanks to their proven high-performance properties. In this paper, the design, implementation, and results of a complete 3-D imaging frequency-modulated continuous-wave MIMO radar demonstrator are presented. The radar sensor working frequency range spans between 16 and 17 GHz, and the proposed solution is based on a 24-transmitter and 24-receiver MIMO radar architecture, implemented by timedivision multiplexing of the transmit signals. A modular approach based on conventional low-cost printed circuit boards is used for the transmit and receive systems. Using digital beamforming algorithms and radar processing techniques on the received signals, a high-resolution 3-D sensing of the range, azimuth, and elevation can be calculated. With the current antenna configuration, an angular resolution of 2.9° can be reached. Furthermore, by taking advantage of the 1-GHz bandwidth of the system, a range resolution of 0.5 m is achieved. The radio-frequency front-end, digital system and radar signal processing units are here presented. The medium-range surveillance potential and the high-resolution capabilities of the MIMO radar are proved with results in the form of radar images captured from the field measurements.Ganis, A.; Miralles-Navarro, E.; Schoenlinner, B.; Prechtel, U.; Meusling, A.; Heller, C.; Spreng, T.... (2018). A portable 3D Imaging FMCW MIMO Radar Demonstrator with a 24x24 Antenna Array for Medium Range Applications. IEEE Transactions on Geoscience and Remote Sensing. 56(1):298-312. https://doi.org/10.1109/TGRS.2017.2746739S29831256

    A FIELD-PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF A COGNITIVE RADAR TARGET RECOGNITION SYSTEM

    Get PDF
    The objective of this study is to design a field-programmable gate array (FPGA) implementation of a cognitive radar (CRr) target recognition system for electronic warfare applications. This thesis expands on the closed-loop adaptive matched waveform transmission technique called probability of weighted energy (PWE). This work also investigates the feasibility of applying the PWE technique in a functional digital hardware realization. Initially, a PWE Monte Carlo simulation model is developed in the Verilog hardware description language that is simulated in the Xilinx Vivado environment. The Verilog module components developed in the Monte Carlo model are then incorporated into a CRr target recognition system experiment utilizing the Xilinx VCU118 Evaluation Board. The VCU118 features the Virtex UltraScale+ high-performance FPGA to accomplish CRr adaptive waveform generation and transmission, digital signal processing requirements, and target classification. The Rohde & Schwarz SMW200A Vector Signal Generator and FSW Signal & Spectrum Analyzer function as the radar system transmitter and receiver, respectively, while the FPGA implementation enables the closed feedback loop used by the CRr.Lieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Performance comparison of reflector and AESA-based digital beamforming for small satellite spaceborne SAR

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) sensors play an ever increasingly important role in Earth observation in the fields of science, geomatics, defence, commercial products and services. The user community requirements for large, high temporal and spatial resolution swaths has driven the need for low-cost, high-performance systems. The increasing availability of commercial launch vehicles shall bolster the manufacturing and industrialisation of a smaller class sensor. This work deals with the performance comparison between a small satellite class planar array and reflector antenna system. Here the focus lies on digital beamforming techniques for the operation in wide-swath, high-resolution stripmap mode. For this the sensor sensitivity and ambiguity suppression performance in range and azimuth are derived. The Jupyter notebook environment with code in the Python language served as a convenient mechanism for modelling and verifying different performance aspects. These performance metrics are simulated and verified against existing systems. The limitations the spherical Earth geometry has on the transmitter timing and the imaged scene are derived. This together with the SAR platform orbital characteristics lead to the establishment of antenna design constraints. A planar array and reflector system are modelled with common design specifications and compared to a sea ice monitoring scenario. The use of digital beamforming techniques together with a high gain reflector antenna surface provided evidence that a reflector antenna would serve as a feasible alternative to planar arrays for spaceborne SAR missions

    TechSat 21 and Revolutionizing Space Missions using Microsatellites

    Get PDF
    The Air Force Research Laboratory (AFRL) TechSat 21 flight experiment demonstrates a formation of three microsatellites flying in formation to operate as a “virtual satellite.” X-band transmit and receive payloads on each of the satellites form a large sparse aperture system. The satellite formation can be configured to optimize such varied missions as radio frequency (RF) sparse aperture imaging, precision geolocation, ground moving target indication (GMTI), single-pass digital terrain elevation data (DTED), electronic protection, single-pass interferometric synthetic aperture radar (IF-SAR), and high data-rate, secure communications. Benefits of such a microsatellite formation over single large satellites include unlimited aperture size and geometry, greater launch flexibility, higher system reliability, easier system upgrade, and low cost mass production. Key research has focused on the areas of formation flying and sparse aperture signal processing and been sponsored and guided by the Air Force Office of Scientific Research (AFOSR). The TechSat 21 Program Preliminary Design Review (PDR) was held in April 2001 and incorporated the results of extensive system trades to achieve a light-weight, high performance satellite design. An overview of experiment objectives, research advances, and satellite design is presented

    Advanced Multi-Channel SAR Imaging - Measured Data Demonstration

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-established technique for remote sensing of the Earth. However, conventional SAR systems relying on only a single transmit and receive aperture are not capable of imaging a wide swath with high spatial resolution. Multi-channel SAR concepts, such as systems based on multiple receive apertures in azimuth, promise to overcome these restrictions, thus enabling high-resolution wide-swath imaging. Analysis revealed that these systems imperatively require sophisticated digital processing of the received signals in order to guarantee full performance independently of the spatial sample distribution imposed by the applied pulse repetition frequency (PRF). A suitable algorithm to cope with these challenges of multi-channel data is given by the “multi-channel reconstruction algorithm”, which demonstrated in comprehensive analysis and system design examples its potential for high perform-ance SAR imaging. In this context, various optimization strategies were investigated and aspects of operating multi-channel systems in burst modes such as ScanSAR or TOPS were discussed. Furthermore, a first proof-of-principle showed the algorithm’s applicability to measured multi-channel X-band data gathered by the German Aerospace Cen-ter’s (DLR) airborne F-SAR system. As a next step in the framework of multi-channel azimuth processing, this paper builds on the results recalled above and continues two paths. Firstly, focus is turned to further optimization of the proc-essing algorithm by investigating the classical Space-Time Adaptive Processing (STAP) applied to SAR. Secondly, attention is turned to the analysis of the measured multi-channel data by elaborating the impact and compensation of channel mismatch and by verifying the derived theory

    System design of the MeerKAT L - band 3D radar for monitoring near earth objects

    Get PDF
    This thesis investigates the current knowledge of small space debris (diameter less than 10 cm) and potentially hazardous asteroids (PHA) by the use of radar systems. It clearly identifies the challenges involved in detecting and tracking of small space debris and PHAs. The most significant challenges include: difficulty in tracking small space debris due to orbital instability and reduced radar cross-section (RCS), errors in some existing data sets, the lack of dedicated or contributing instruments in the Southern Hemisphere, and the large cost involved in building a high-performance radar for this purpose. This thesis investigates the cooperative use of the KAT-7 (7 antennas) and MeerKAT (64 antennas) radio telescope receivers in a radar system to improve monitoring of small debris and PHAs was investigated using theory and simulations, as a cost-effective solution. Parameters for a low cost and high-performance radar were chosen, based on the receiver digital back-end. Data from such radars will be used to add to existing catalogues thereby creating a constantly updated database of near Earth objects and bridging the data gap that is currently being filled by mathematical models. Based on literature and system requirements, quasi-monostatic, bistatic, multistatic, single input multiple output (SIMO) radar configurations were proposed for radio telescope arrays in detecting, tracking and imaging small space debris in the low Earth orbit (LEO) and PHAs. The maximum dwell time possible for the radar geometry was found to be 30 seconds, with coherent integration limitations of 2 ms and 121 ms for accelerating and non-accelerating targets, respectively. The multistatic and SIMO radar configurations showed sufficient detection (SNR 13 dB) for small debris and quasi-monostatic configuration for PHAs. Radar detection, tracking and imaging (ISAR) simulations were compared to theory and ambiguities in range and Doppler were compensated for. The main contribution made by this work is a system design for a high performance, cost effective 3D radar that uses the KAT-7 and MeerKAT radio telescope receivers in a commensal manner. Comparing theory and simulations, the SNR improvement, dwell time increase, tracking and imaging capabilities, for small debris and PHAs compared to existing assets, was illustrated. Since the MeerKAT radio telescope is a precursor for the SKA Africa, extrapolating the capabilities of the MeerKAT radar to the SKA radar implies that it would be the most sensitive and high performing contributor to space situational awareness, upon its completion. From this feasibility study, the MeerKAT 3D distributed radar will be able to detect debris of diameter less than 10 cm at altitudes between 700 km to 900 km, and PHAs, with a range resolution of 15 m, a minimum SNR of 14 dB for 152 pulses for a coherent integration time of 2.02 ms. The target range (derived from the two way delay), velocity (from Doppler frequency) and direction will be measured within an accuracy of: 2.116 m, 15.519 m/s, 0.083° (single antenna), respectively. The range, velocity accuracies and SNR affect orbit prediction accuracy by 0.021 minutes for orbit period and 0.0057° for orbit inclination. The multistatic radar was found to be the most suitable and computationally efficient configuration compared to the bistatic and SIMO configurations, and beamforming should be implemented as required by specific target geometry
    • 

    corecore