8 research outputs found

    On the derivation of the spatial QRS-T angle from Mason-Likar leads I, II, V2 and V5

    Get PDF
    The spatial QRS-T angle (SA) has been identified as a marker for changes in the ventricular depolarization and repolarization sequence. The determination of the SA requires vectorcardiographic (VCG) data. However, VCG data is seldom recorded in monitoring applications. This is mainly due to the fact that the number and location of the electrodes required for recording the Frank VCG complicate the recording of VCG data in monitoring applications. Alternatively, reduced lead systems (RLS) allow for the derivation of the Frank VCG from a reduced number of electrocardiographic (ECG) leads. Derived Frank VCGs provide a practical means for the determination of the SA in monitoring applications. One widely studied RLS that is used in clinical practice is based upon Mason-Likar leads I, II, V2 and V5 (MLRL). The aim of this research was two-fold. First, to develop a linear ECG lead transformation matrix that allows for the derivation of the Frank VCG from the MLRL system. Second, to assess the accuracy of the MLRL derived SA (MSA). We used ECG data recorded from 545 subjects for the development of the linear ECG lead transformation matrix. The accuracy of the MSA was assessed by analyzing the differences between the MSA and the SA using the ECG data of 181 subjects. The differences between the MSA and the SA were quantified as systematic error (mean difference) and random error (span of Bland-Altman 95% limits of agreement). The systematic error between the MSA and the SA was found to be 9.38° [95% confidence interval: 7.03° to 11.74°]. The random error was quantified as 62.97° [95% confidence interval: 56.55° to 70.95°]

    Detection of T wave peak for serial comparisons of JTp interval

    Get PDF
    Electrocardiogram (ECG) studies of drug-induced prolongation of the interval between the J point and the peak of the T wave (JTp interval) distinguished QT prolonging drugs that predominantly block the delayed potassium rectifier current from those affecting multiple cardiac repolarisation ion channel currents. Since the peak of the T wave depends on ECG lead, a “global” T peak requires to combine ECG leads into one-dimensional signal in which the T wave peak can be measured. This study aimed at finding the optimum one-dimensional representation of 12-lead ECGs for the most stable JTp measurements. Seven different one-dimensional representations were investigated including the vector magnitude of the orthogonal XYZ transformation, root mean square of all 12 ECG leads, and the vector magnitude of the 3 dominant orthogonal leads derived by singular value decomposition. All representations were applied to the representative waveforms of 660,657 separate 10-second 12-lead ECGs taken from repeated day-time Holter recordings in 523 healthy subjects aged 33.5±8.4 years (254 women). The JTp measurements were compared with the QT intervals and with the intervals between the J point and the median point of the area under the T wave one-dimensional representation (JT50 intervals) by means of calculating the residuals of the subject-specific curvilinear regression models relating the measured interval to the hysteresis-corrected RR interval of the underlying heart rate. The residuals of the regression models (equal to the intra-subject standard deviations of individually heart rate corrected intervals) expressed intra-subject stability of interval measurements. For both the JTp intervals and the JT50 intervals, the curvilinear regression residuals of measurements derived from the orthogonal XYZ representation were marginally but statistically significantly lower compared to the other representations. Using the XYZ representation, the residuals of the QT/RR, JTp/RR and JT50/RR regressions were 5.6±1.1 ms, 7.2±2.2 ms, and 4.9±1.2 ms, respectively (all statistically significantly different; p<0.0001). The study concludes that the orthogonal XYZ ECG representation might be proposed for future investigations of JTp and JT50 intervals. If the ability of classifying QT prolonging drugs is further confirmed for the JT50 interval, it might be appropriate to replace the JTp interval since it appears more stable
    corecore