31 research outputs found

    Order-Theoretic Methods for Space-Time Coding: Symmetric and Asymmetric Designs

    Get PDF
    Siirretty Doriast

    Perfect Space–Time Block Codes

    Get PDF
    In this paper, we introduce the notion of perfect space–time block codes (STBCs). These codes have full-rate, full-diversity, nonvanishing constant minimum determinant for increasing spectral efficiency, uniform average transmitted energy per antenna and good shaping. We present algebraic constructions of perfect STBCs for 2, 3, 4, and 6 antennas

    Algebraic Hybrid Satellite-Terrestrial Space-Time Codes for Digital Broadcasting in SFN

    Full text link
    Lately, different methods for broadcasting future digital TV in a single frequency network (SFN) have been under an intensive study. To improve the transmission to also cover suburban and rural areas, a hybrid scheme may be used. In hybrid transmission, the signal is transmitted both from a satellite and from a terrestrial site. In 2008, Y. Nasser et al. proposed to use a double layer 3D space-time (ST) code in the hybrid 4 x 2 MIMO transmission of digital TV. In this paper, alternative codes with simpler structure are proposed for the 4 x 2 hybrid system, and new codes are constructed for the 3 x 2 system. The performance of the proposed codes is analyzed through computer simulations, showing a significant improvement over simple repetition schemes. The proposed codes prove in addition to be very robust in the presence of power imbalance between the two sites.Comment: 14 pages, 2 figures, submitted to ISIT 201

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Codes over Matrix Rings for Space-Time Coded Modulations

    Full text link
    It is known that, for transmission over quasi-static MIMO fading channels with n transmit antennas, diversity can be obtained by using an inner fully diverse space-time block code while coding gain, derived from the determinant criterion, comes from an appropriate outer code. When the inner code has a cyclic algebra structure over a number field, as for perfect space-time codes, an outer code can be designed via coset coding. More precisely, we take the quotient of the algebra by a two-sided ideal which leads to a finite alphabet for the outer code, with a cyclic algebra structure over a finite field or a finite ring. We show that the determinant criterion induces various metrics on the outer code, such as the Hamming and Bachoc distances. When n=2, partitioning the 2x2 Golden code by using an ideal above the prime 2 leads to consider codes over either M2(F_2) or M2(F_2[i]), both being non-commutative alphabets. Matrix rings of higher dimension, suitable for 3x3 and 4x4 perfect codes, give rise to more complex examples
    corecore