916 research outputs found

    Dead-Time compensators: A unified approach

    Get PDF
    IFAC Linear Time Delay Systems,Grenoble,France,1998This paper shows how most dead-time compensators can be considered as a particular case ofa proposed general control structure. The proposed structure can be tuned taking into account the performance and robustness ofthe closed-loop. The obtained controller is more general and allows better results than previous algorithms. In order to illustrate the results, some simulation examples are shown

    Distributed Generation Control using Protection Principles

    Get PDF
    In a distribution system, it is essential to maintain the voltage variation within a specified limit for satisfactory operation of connected customers' equipment. Normally, this goal is achieved by controlling the operation of compensating devices, such as load tap changing transformers, shunt capacitors, series capacitors, shunt reactors, and static VAr compensators. However, technical and regulatory developments are encouraging a greater number of small generator units, known as Distributed Generation (DG), and this has the potential to significantly affect voltage control systems. This paper presents an adaptive voltage control technique which incorporates DG systems into the voltage control system. The control scheme uses On-load Tap Changing Transformer (OLTC) and DG for voltage corrections, both are driven by advanced Line Drop Compensators (LDC). At the substation, the LDC is employed to control step up or step down decisions of the OLTC, while another LDC will be used at DG connection point to set DG parameters. Also, for a more cost-effective system, voltage control action coordination is proposed using magnitude grading and time grading. The control approach is tested on a modified distribution system with load variations that are stochastic in time and location. The results show that the integration of these magnitude grading and time grading, protection principles have considerably reduced the DG energy required to achieve the desired control

    Robust tuning procedures of dead-time compensating controllers

    Get PDF
    This paper describes tuning procedures for dead-time compensating controllers (DTC). Both stable and integrating processes are considered. Simple experiments are performed to obtain process models as well as bounds on the allowable bandwidth for stability. The DTC's used have few parameters with clear physical interpretation so that manual tuning is possible. Furthermore, it is shown how the DTC's can be made robust towards dead-time variations. </p

    A Prediction approach to introduce dead-time process control in a basic control course

    Get PDF
    7TH IFAC SYMPOSIUM ON ADVANCES IN CONTROL EDUCATION. 21/06/2006. MADRIDThis paper presents a methodology to introduce the control of dead-time processes using a simple and intuitive predictive approach. A trivial solutionfor the control of a process with a dead-time is first proposed. From this strategythe idea of the predictor based controller is derived. Open-loop predictors andclosed-loop ones are then used to analyze the obtained solution. A simple tuningof the proposed structure for a first order plus dead-time process together with apolynomial approximation of the dead-time allows to derive apidcontroller. Thus,the approach based on the idea of prediction can be used to interpret the use of apidto control a dead-time process. It is illustrated how the performance of thepidcontroller is limited by the modelling error introduced in the approximation. Thepresented approach gives a measurement of the achievable performance. Severalsimulation examples illustrate the results.Ministerio de Ciencia y Tecnología DPI 2005-0456

    Maximum Peak-Gain Margin 2DOF-IMC Tuning for a 2DOF-PID Filter Set Point Controller Under Parametric Uncertainty

    Get PDF
    The specification of controller setting for a standard controller typically requires a trade-off between set point tracking and disturbance rejection. For this reason two simple strategies can be used to adjust the set point and disturbance responses independently. These strategies are referred to as controllers with two degree of freedom. Unfortunately, the tuning parameters in the case of model uncertainty at two degree of freedom structure controller is difficult to obtain. Juwari et al (2013) has introduced maximum peak-gain margin (Mp-GM) tuning method to obtain setting parameter of two degree of freedom structure controller based on model uncertainty. This tuning method are able to obtain the good controller parameter even under processes uncertainties on standard two degree of freedom (was abbreviated as 2DOF) IMC. This research will be conducted on development maximum peak-gain margin tuning method for a two degree of freedom PID filter set point structure controller. The simulation results show that the maximum peak gain margin tuning method can give a good target set point tracking, disturbance rejection and robustness in system a 2DOF-PID filter set point controller

    High performance DSP-based servo drive control for a limited-angle torque motor

    Get PDF
    This thesis describes the analysis, design and implementation of a high performance DSP-based servo drive for a limited-angle torque motor used in thermal imaging applications. A limited-angle torque motor is an electromagnetic actuator based on the Laws' relay principle, and in the present application the rotation required was from - 10° to + 10° in 16 ms, with a flyback period of 4 ms. To ensure good quality picture reproduction, an exceptionally high linearity of ±0.02 ° was necessary throughout the forward sweep. In addition, the drive voltage to the exciting winding of the motor should be less than the +35 V ceiling of the drive amplifier. A research survey shows that little literature was available, probably due to the commercial sensitivity of many of the applications for torque motors. A detailed mathematical model of the motor drive, including high-order linear dynamics and the significant nonlinear characteristics, was developed to provide an insight into the overall system behaviour. The proposed control scheme uses a multicompensator, multi-loop linear controller, to reshape substantially the motor response characteristic, with a non-linear adaptive gain-scheduled controller to compensate effectively for the nonlinear variations of the motor parameters. The scheme demonstrates that a demanding nonlinear control system may be conveniently analysed and synthesised using frequency-domain methods, and that the design techniques may be reliably applied to similar electro-mechanical systems required to track a repetitive waveform. A prototype drive system was designed, constructed and tested during the course of the research. The drive system comprises a DSP-based digital controller, a linear power amplifier and the feedback signal conditioning circuit necessary for the closed-loop control. A switch-mode amplifier was also built, evaluated and compared with the linear amplifier. It was shown that the overall performance of the linear amplifier was superior to that of the switch-mode amplifier for the present application. The control software was developed using the structured programming method, with the continuous controller converted to digital form using the bilinear transform. The 6- operator was used rather than the z-operator, since it is more advantageous for high speed sampling systems. The gain-scheduled control was implemented by developing a schedule table, which is controlled by the DSP program to update continuously the controller parameters in synchronism with the periodic scanning of the motor. The experimental results show excellent agreement with the simulated results, with linearity of ±0.05 ° achieved throughout the forward sweep. Although this did not quite meet the very demanding specifications due to the limitations of the experimental drive system, it clearly demonstrates the effectiveness of the proposed control scheme. The discrepancies between simulated and experimental results are analyzed and discussed, the control design method is reviewed, and detailed suggestions are presented for further work which may improve the drive performance

    PID Tuning of Plants With Time Delay Using Root Locus

    Get PDF
    This thesis research uses closed-loop pole analysis to study the dynamic behavior of proportional-integral-derivative (PID) controlled feedback systems with time delay. A conventional tool for drawing root loci, the MATLAB function rlocus() cannot draw root loci for systems with time delay, and so another numerical method was devised to examine the appearance and behavior of root loci in systems with time delay. Approximating the transfer function of time delay can lead to a mismatch between a predicted and actual response. Such a mismatch is avoided with the numerical method developed here. The method looks at the angle and magnitude conditions of the closed-loop characteristic equation to identify the true positions of closed-loop poles, their associated compensation gains, and the gain that makes a time-delayed system become marginally stable. Predictions for system response made with the numerical method are verified with a mathematical analysis and cross-checked against known results. This research generates tuning coefficients for proportional-integral (PI) control of a first-order plant with time delay and PID control of a second-order plant with time delay. The research has applications to industrial processes, such as temperature-control loops

    Anti windup implementation on different PID structures

    Get PDF
    Although there have been tremendous advances in control theory over the last 25 years, the PID controller remains very popular and is still widely used in industry. A vital aspect of its implementation is the selection of a suitable set of parameters, as an improperly tuned controller might lead to adverse effects on process operation and worse, cause system instability. In industry, there are various types of PID controllers in addition to the 'textbook' PID but most tuning methods were developed based on this ideal algorithm. Another issue that is always associated with PID controllers is integral windup and the most popular method to overcome this problem is to add an anti windup compensator. This article includes the assessment of three anti windup strategies in combination with different tuning methods. The characteristics of PID controllers tuned using these approaches are evaluated by application to simulated FOPTD processes with different time-delay to time-constant ratios. Different measures were used to assess their performance and robustness properties, and the applicability of the tuning relationships to more typical (non-ideal) PID controllers is also considered. In general, the anti windup compensators successfully reduced the degradation effect caused by integral windup. It was found that the effectiveness of the different anti windup schemes varied depending on controller tuning methods and controller structures

    Advanced control architectures for grid connected and standalone converter systems

    Get PDF
    This dissertation proposes new control algorithms dedicated towards improving the reliability, computational burden and stability in grid-connected and stand-alone based power electronic converter systems applicable for ac microgrids. Two voltage sensorless control architectures, one for stand-alone applications and the other for grid-connected application are established in this thesis. The output voltage of a standalone single-phase inverter is controlled directly by controlling the output filter capacitor current without using a dedicated output voltage sensor. A method to estimate the output filter capacitance is also presented. For the grid connected converter, a novel closed loop estimation is presented to estimate the grid voltage. In addition to the estimation of the grid voltage, the proposed method also generates the unit vectors and frequency information similar to a conventional phase-locked loop structure. The voltage sensorless algorithm is then extended to LCL filter based grid connected converters thereby proposing a new indirect method of controlling the grid current. Furthermore, addressing the stability issues in current-controlled grid tied converters, this dissertation also analyzes the power angle synchronization control of grid-tied bidirectional converters for low voltage grids. The power flow equations for the low voltage grid are analyzed and compensators are designed to ensure the decoupled control of active and reactive power. It is demonstrated that the proposed compensators are immune to grid fluctuations and ensure stable operation controlling the desired power flow to and from the grid. Detailed plant modeling, controller design, simulation and experimental results are presented for all of the proposed schemes --Abstract, page iv
    corecore