56,549 research outputs found

    Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls

    Get PDF
    We study directional relationships—in the driver-responder sense—in networks of coupled nonlinear oscillators using a phase modeling approach. Specifically, we focus on the identification of drivers in clusters with varying levels of synchrony, mimicking dynamical interactions between the seizure generating region (epileptic focus) and other brain structures. We demonstrate numerically that such an identification is not always possible in a reliable manner. Using the same analysis techniques as in model systems, we study multichannel electroencephalographic recordings from two patients suffering from focal epilepsy. Our findings demonstrate that—depending on the degree of intracluster synchrony—certain subsystems can spuriously appear to be driving others, which should be taken into account when analyzing field data with unknown underlying dynamics

    Multistable attractors in a network of phase oscillators with three-body interaction

    Full text link
    Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in asymptotic state can vary continuously within some range depending on the initial phase pattern.Comment: 5 pages, 3 figure

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Spatial synchrony in stream fish populations: influence of species traits

    Get PDF
    Spatial synchrony in population dynamics has been identified in most taxonomic groups. Numerous studies have reported varying levels of spatial synchrony among closely-related species, suggesting that species' characteristics may play a role in determining the level of synchrony. However, few studies have attempted to relate this synchrony to the ecological characteristics and/or life-history traits of species. Yet, as to some extent the extinction risk may be related to synchrony patterns, identifying a link between species' characteristics and spatial synchrony is crucial, and would help us to define effective conservation planning. Here, we investigated whether species attributes and temperature synchrony (i.e. a proxy of the Moran effect) account for the differences in spatial population synchrony observed in 27 stream fish species in France. After measuring and testing the level of synchrony for each species, we performed a comparative analysis to detect the phylogenetic signal of these levels, and to construct various multi-predictor models with species traits and temperature synchrony as covariates, while taking phylogenetic relatedness into account. We then performed model averaging on selected models to take model uncertainty into account in our parameter estimates. Fifteen of the 27 species displayed a significant level of synchrony. Synchrony was weak, but highly variable between species, and was not conserved across the phylogeny. We found that some species' characteristics significantly influenced synchrony levels. Indeed, the average model indicated that species associated with greater dispersal abilities, lower thermal tolerance, and opportunistic strategy displayed a higher degree of synchrony. These findings indicate that phylogeny and spatial temperature synchrony do not provide information pertinent for explaining the variations in species' synchrony levels, whereas the dispersal abilities, the life-history strategies and the upper thermal tolerance limits of species do appear to be quite reliable predictors of synchrony levels

    Detecting replay attacks in audiovisual identity verification

    Get PDF
    We describe an algorithm that detects a lack of correspondence between speech and lip motion by detecting and monitoring the degree of synchrony between live audio and visual signals. It is simple, effective, and computationally inexpensive; providing a useful degree of robustness against basic replay attacks and against speech or image forgeries. The method is based on a cross-correlation analysis between two streams of features, one from the audio signal and the other from the image sequence. We argue that such an algorithm forms an effective first barrier against several kinds of replay attack that would defeat existing verification systems based on standard multimodal fusion techniques. In order to provide an evaluation mechanism for the new technique we have augmented the protocols that accompany the BANCA multimedia corpus by defining new scenarios. We obtain 0% equal-error rate (EER) on the simplest scenario and 35% on a more challenging one

    Detecting replay attacks in audiovisual identity verification

    Get PDF
    We describe an algorithm that detects a lack of correspondence between speech and lip motion by detecting and monitoring the degree of synchrony between live audio and visual signals. It is simple, effective, and computationally inexpensive; providing a useful degree of robustness against basic replay attacks and against speech or image forgeries. The method is based on a cross-correlation analysis between two streams of features, one from the audio signal and the other from the image sequence. We argue that such an algorithm forms an effective first barrier against several kinds of replay attack that would defeat existing verification systems based on standard multimodal fusion techniques. In order to provide an evaluation mechanism for the new technique we have augmented the protocols that accompany the BANCA multimedia corpus by defining new scenarios. We obtain 0% equal-error rate (EER) on the simplest scenario and 35% on a more challenging one
    corecore