289 research outputs found

    On the Degree Growth in Some Polynomial Dynamical Systems and Nonlinear Pseudorandom Number Generators

    Full text link
    In this paper we study a class of dynamical systems generated by iterations of multivariate polynomials and estimate the degreegrowth of these iterations. We use these estimates to bound exponential sums along the orbits of these dynamical systems and show that they admit much stronger estimates than in the general case and thus can be of use for pseudorandom number generation.Comment: Mathematics of Computation (to appear

    Full Orbit Sequences in Affine Spaces via Fractional Jumps and Pseudorandom Number Generation

    Full text link
    Let nn be a positive integer. In this paper we provide a general theory to produce full orbit sequences in the affine nn-dimensional space over a finite field. For n=1n=1 our construction covers the case of the Inversive Congruential Generators (ICG). In addition, for n>1n>1 we show that the sequences produced using our construction are easier to compute than ICG sequences. Furthermore, we prove that they have the same discrepancy bounds as the ones constructed using the ICG.Comment: To appear in Mathematics of Computatio

    Algebraic entropy, automorphisms and sparsity of algebraic dynamical systems and pseudorandom number generators

    Get PDF
    ABSTRACT: We present several general results that show how algebraic dynamical systems with a slow degree growth and also rational automorphisms can be used to construct stronger pseu-dorandom number generators. We then give several concrete constructions that illustrate the applicability of these general results

    Fractional jumps: complete characterisation and an explicit infinite family

    Full text link
    In this paper we provide a complete characterisation of transitive fractional jumps by showing that they can only arise from transitive projective automorphisms. Furthermore, we prove that such construction is feasible for arbitrarily large dimension by exhibiting an infinite class of projectively primitive polynomials whose companion matrix can be used to define a full orbit sequence over an affine space

    An Algebraic System for Constructing Cryptographic Permutations over Finite Fields

    Full text link
    In this paper we identify polynomial dynamical systems over finite fields as the central component of almost all iterative block cipher design strategies over finite fields. We propose a generalized triangular polynomial dynamical system (GTDS), and give a generic algebraic definition of iterative (keyed) permutation using GTDS. Our GTDS-based generic definition is able to describe widely used and well-known design strategies such as substitution permutation network (SPN), Feistel network and their variants among others. We show that the Lai-Massey design strategy for (keyed) permutations is also described by the GTDS. Our generic algebraic definition of iterative permutation is particularly useful for instantiating and systematically studying block ciphers and hash functions over Fp\mathbb{F}_p aimed for multiparty computation and zero-knowledge based cryptographic protocols. Finally, we provide the discrepancy analysis a technique used to measure the (pseudo-)randomness of a sequence, for analyzing the randomness of the sequence generated by the generic permutation or block cipher described by GTDS

    Maximum order complexity of the sum of digits function in Zeckendorf base and polynomial subsequences

    Full text link
    Automatic sequences are not suitable sequences for cryptographic applications since both their subword complexity and their expansion complexity are small, and their correlation measure of order 2 is large. These sequences are highly predictable despite having a large maximum order complexity. However, recent results show that polynomial subsequences of automatic sequences, such as the Thue--Morse sequence, are better candidates for pseudorandom sequences. A natural generalization of automatic sequences are morphic sequences, given by a fixed point of a prolongeable morphism that is not necessarily uniform. In this paper we prove a lower bound for the maximum order complexity of the sum of digits function in Zeckendorf base which is an example of a morphic sequence. We also prove that the polynomial subsequences of this sequence keep large maximum order complexity, such as the Thue--Morse sequence.Comment: 23 pages, 5 figures, 4 table
    corecore