1,384 research outputs found

    Computational Arithmetic Geometry I: Sentences Nearly in the Polynomial Hierarchy

    Get PDF
    We consider the average-case complexity of some otherwise undecidable or open Diophantine problems. More precisely, consider the following: (I) Given a polynomial f in Z[v,x,y], decide the sentence \exists v \forall x \exists y f(v,x,y)=0, with all three quantifiers ranging over N (or Z). (II) Given polynomials f_1,...,f_m in Z[x_1,...,x_n] with m>=n, decide if there is a rational solution to f_1=...=f_m=0. We show that, for almost all inputs, problem (I) can be done within coNP. The decidability of problem (I), over N and Z, was previously unknown. We also show that the Generalized Riemann Hypothesis (GRH) implies that, for almost all inputs, problem (II) can be done via within the complexity class PP^{NP^NP}, i.e., within the third level of the polynomial hierarchy. The decidability of problem (II), even in the case m=n=2, remains open in general. Along the way, we prove results relating polynomial system solving over C, Q, and Z/pZ. We also prove a result on Galois groups associated to sparse polynomial systems which may be of independent interest. A practical observation is that the aforementioned Diophantine problems should perhaps be avoided in the construction of crypto-systems.Comment: Slight revision of final journal version of an extended abstract which appeared in STOC 1999. This version includes significant corrections and improvements to various asymptotic bounds. Needs cjour.cls to compil

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    A formal quantifier elimination for algebraically closed fields

    Get PDF
    The final publication is available at www.springerlink.comInternational audienceWe prove formally that the first order theory of algebraically closed fields enjoy quantifier elimination, and hence is decidable. This proof is organized in two modular parts. We first reify the first order theory of rings and prove that quantifier elimination leads to decidability. Then we implement an algorithm which constructs a quantifier free formula from any first order formula in the theory of ring. If the underlying ring is in fact an algebraically closed field, we prove that the two formulas have the same semantic. The algorithm producing the quantifier free formula is programmed in continuation passing style, which leads to both a concise program and an elegant proof of semantic correctness
    • …
    corecore