122,654 research outputs found

    Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei

    Get PDF
    A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent Schrodinger equation. Initial quasi- stationary proton states are chosen in the framework of a deformed Woods-Saxon single-particle model. The decay of two sets of states corresponding to true and quasi levels-crossing is studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the crossing point. The results show that the investigation of the proton decay from metastable states in deformed nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the nuclear states involved.Comment: 15 pages, 9 figures, submitted to Phys. Rev.

    Metastable Feshbach Molecules in High Rotational States

    Full text link
    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.Comment: 4 pages, 5 figure

    Semiclassical model of ultrafast photoisomerization reactions

    Full text link
    In this letter we propose a model which explains ultrafast and efficient photoisomerization reactions as driven by transitions between quasistationary states of one dimensional (1D) double well potential of an excited electronic state. This adiabatic potential is formed as a result of doubly crossing of a decay diabatic potential of the ground electronic state and a bound diabatic potential of the excited state. We calculate the eigenstates and eigenfunctions using the semiclassical connection matrices at the turning and crossing points and the shift matrices between these points. The transitions between the localized in the wells below the adiabatic barrier states are realized by the tunneling and by the double non-adiabatic transitions via the crossing points processes. Surprisingly the behavior with the maximum transition rate keeps going even for the states relatively far above the barrier (2 -4 times the barrier height). Even though a specific toy model is investigated here, when properly interpreted it yields quite reasonable values for a variety of measured quantities, such as a reaction quantum yield, and conversion time.Comment: 9 pages, 5 figures. accepted to Chem. Phys. Letters (2005

    Photonic band mixing in linear chains of optically coupled micro-spheres

    Full text link
    The paper deals with optical excitations arising in a one-dimensional chain of identical spheres due optical coupling of whispering gallery modes (WGM). The band structure of these excitations depends significantly on the inter-mixing between WGMs characterized by different values of angular quantum number, ll. We develop a general theory of the photonic band structure of these excitations taking these effects into account and applied it to several cases of recent experimental interest. In the case of bands originating from WQMs with the angular quantum number of the same parity, the calculated dispersion laws are in good qualitative agreement with recent experiment results. Bands resulting from hybridization of excitations resulting from whispering gallery modes with different parity of ll exhibits anomalous dispersion properties characterized by a gap in the allowed values of \emph{wave numbers} and divergence of group velocity.Comment: RevTex, 28 pages, 7 Figure
    • …
    corecore