1,689 research outputs found

    On the Expansion of Group-Based Lifts

    Get PDF
    A kk-lift of an nn-vertex base graph GG is a graph HH on n×kn\times k vertices, where each vertex vv of GG is replaced by kk vertices v1,,vkv_1,\cdots{},v_k and each edge (u,v)(u,v) in GG is replaced by a matching representing a bijection πuv\pi_{uv} so that the edges of HH are of the form (ui,vπuv(i))(u_i,v_{\pi_{uv}(i)}). Lifts have been studied as a means to efficiently construct expanders. In this work, we study lifts obtained from groups and group actions. We derive the spectrum of such lifts via the representation theory principles of the underlying group. Our main results are: (1) There is a constant c1c_1 such that for every k2c1ndk\geq 2^{c_1nd}, there does not exist an abelian kk-lift HH of any nn-vertex dd-regular base graph with HH being almost Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(d)O(\sqrt{d}) in magnitude). This can be viewed as an analogue of the well-known no-expansion result for abelian Cayley graphs. (2) A uniform random lift in a cyclic group of order kk of any nn-vertex dd-regular base graph GG, with the nontrivial eigenvalues of the adjacency matrix of GG bounded by λ\lambda in magnitude, has the new nontrivial eigenvalues also bounded by λ+O(d)\lambda+O(\sqrt{d}) in magnitude with probability 1keΩ(n/d2)1-ke^{-\Omega(n/d^2)}. In particular, there is a constant c2c_2 such that for every k2c2n/d2k\leq 2^{c_2n/d^2}, there exists a lift HH of every Ramanujan graph in a cyclic group of order kk with HH being almost Ramanujan. We use this to design a quasi-polynomial time algorithm to construct almost Ramanujan expanders deterministically. The existence of expanding lifts in cyclic groups of order k=2O(n/d2)k=2^{O(n/d^2)} can be viewed as a lower bound on the order k0k_0 of the largest abelian group that produces expanding lifts. Our results show that the lower bound matches the upper bound for k0k_0 (upto d3d^3 in the exponent)

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Some results on the palette index of graphs

    Full text link
    Given a proper edge coloring φ\varphi of a graph GG, we define the palette SG(v,φ)S_{G}(v,\varphi) of a vertex vV(G)v \in V(G) as the set of all colors appearing on edges incident with vv. The palette index sˇ(G)\check s(G) of GG is the minimum number of distinct palettes occurring in a proper edge coloring of GG. In this paper we give various upper and lower bounds on the palette index of GG in terms of the vertex degrees of GG, particularly for the case when GG is a bipartite graph with small vertex degrees. Some of our results concern (a,b)(a,b)-biregular graphs; that is, bipartite graphs where all vertices in one part have degree aa and all vertices in the other part have degree bb. We conjecture that if GG is (a,b)(a,b)-biregular, then sˇ(G)1+max{a,b}\check{s}(G)\leq 1+\max\{a,b\}, and we prove that this conjecture holds for several families of (a,b)(a,b)-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper
    corecore