38,340 research outputs found

    Fixed poin sets in digital topology, 1

    Full text link
    [EN] In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, and we obtain results that often differ greatly from standard results in classical topology. We introduce several measures related to fixed points for continuous self-maps on digital images, and study their properties. Perhaps the most important of these is the fixed point spectrum F(X) of a digital image: that is, the set of all numbers that can appear as the number of fixed points for some continuous self-map. We give a complete computation of F(Cn) where Cn is the digital cycle of n points. For other digital images, we show that, if X has at least 4 points, then F(X) always contains the numbers 0, 1, 2, 3, and the cardinality of X. We give several examples, including Cn, in which F(X) does not equal {0, 1, . . . , #X}. We examine how fixed point sets are affected by rigidity, retraction, deformation retraction, and the formation of wedges and Cartesian products. We also study how fixed point sets in digital images can be arranged; e.g., for some digital images the fixed point set is always connected.Boxer, L.; Staecker, PC. (2020). Fixed poin sets in digital topology, 1. Applied General Topology. 21(1):87-110. https://doi.org/10.4995/agt.2020.12091OJS87110211C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146L. Boxer, Fixed points and freezing sets in digital topology, Proceedings, 2019 Interdisciplinary Colloquium in Topology and its Applications, in Vigo, Spain; 55-61.L. Boxer, O. Ege, I. Karaca, J. Lopez, and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180.L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474J. Haarmann, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Mathematics 18 (1983). https://doi.org/10.1090/conm/014E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE Intl. Conf. on Systems, Man, and Cybernetics (1987), 227-234.A. Rosenfeld, "Continuous" functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6P. C. Staecker, Some enumerations of binary digital images, arXiv:1502.06236, 2015

    An alternative solution to the model structure selection problem

    Get PDF
    An alternative solution to the model structure selection problem is introduced by conducting a forward search through the many possible candidate model terms initially and then performing an exhaustive all subset model selection on the resulting model. An example is included to demonstrate that this approach leads to dynamically valid nonlinear model

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Robust stability serves as an important regulation mechanism in system biology and synthetic biology. In this paper, the robust stability analysis problem is investigated for a class of nonlinear delayed genetic regulatory networks with parameter uncertainties and stochastic perturbations. The nonlinear function describing the feedback regulation satisfies the sector condition, the time delays exist in both translation and feedback regulation processes, and the state-dependent Brownian motions are introduced to reflect the inherent intrinsic and extrinsic noise perturbations. The purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. By utilizing a new Lyapunov functional based on the idea of “delay fractioning”, we employ the linear matrix inequality (LMI) technique to derive delay-dependent sufficient conditions ensuring the robust stability of the gene regulatory networks. Note that the obtained results are formulated in terms of LMIs that can easily be solved using standard software packages. Simulation examples are exploited to illustrate the effectiveness of the proposed design procedures
    corecore