74 research outputs found

    Boxicity and Cubicity of Product Graphs

    Full text link
    The 'boxicity' ('cubicity') of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in RkR^k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of dd, of the boxicity and the cubicity of the dd-th power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dd-th Cartesian power of any given finite graph is in O(logd/loglogd)O(\log d / \log\log d) and θ(d/logd)\theta(d / \log d), respectively. On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products.Comment: 14 page

    Boxicity and Cubicity of Asteroidal Triple free graphs

    Get PDF
    An axis parallel dd-dimensional box is the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line. The {\it boxicity} of a graph GG, denoted as \boxi(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-dimensional boxes. An axis parallel unit cube in dd-dimensional space or a dd-cube is defined as the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line of the form [ai,ai+1][a_i,a_i + 1]. The {\it cubicity} of GG, denoted as \cub(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-cubes. Let S(m)S(m) denote a star graph on m+1m+1 nodes. We define {\it claw number} of a graph GG as the largest positive integer kk such that S(k)S(k) is an induced subgraph of GG and denote it as \claw. Let GG be an AT-free graph with chromatic number χ(G)\chi(G) and claw number \claw. In this paper we will show that \boxi(G) \leq \chi(G) and this bound is tight. We also show that \cub(G) \leq \boxi(G)(\ceil{\log_2 \claw} +2) \leq \chi(G)(\ceil{\log_2 \claw} +2). If GG is an AT-free graph having girth at least 5 then \boxi(G) \leq 2 and therefore \cub(G) \leq 2\ceil{\log_2 \claw} +4.Comment: 15 pages: We are replacing our earlier paper regarding boxicity of permutation graphs with a superior result. Here we consider the boxicity of AT-free graphs, which is a super class of permutation graph

    Cubicity of interval graphs and the claw number

    Full text link
    Let G(V,E)G(V,E) be a simple, undirected graph where VV is the set of vertices and EE is the set of edges. A bb-dimensional cube is a Cartesian product I1×I2×...×IbI_1\times I_2\times...\times I_b, where each IiI_i is a closed interval of unit length on the real line. The \emph{cubicity} of GG, denoted by \cub(G) is the minimum positive integer bb such that the vertices in GG can be mapped to axis parallel bb-dimensional cubes in such a way that two vertices are adjacent in GG if and only if their assigned cubes intersect. Suppose S(m)S(m) denotes a star graph on m+1m+1 nodes. We define \emph{claw number} ψ(G)\psi(G) of the graph to be the largest positive integer mm such that S(m)S(m) is an induced subgraph of GG. It can be easily shown that the cubicity of any graph is at least \ceil{\log_2\psi(G)}. In this paper, we show that, for an interval graph GG \ceil{\log_2\psi(G)}\le\cub(G)\le\ceil{\log_2\psi(G)}+2. Till now we are unable to find any interval graph with \cub(G)>\ceil{\log_2\psi(G)}. We also show that, for an interval graph GG, \cub(G)\le\ceil{\log_2\alpha}, where α\alpha is the independence number of GG. Therefore, in the special case of ψ(G)=α\psi(G)=\alpha, \cub(G) is exactly \ceil{\log_2\alpha}. The concept of cubicity can be generalized by considering boxes instead of cubes. A bb-dimensional box is a Cartesian product I1×I2×...×IbI_1\times I_2\times...\times I_b, where each IiI_i is a closed interval on the real line. The \emph{boxicity} of a graph, denoted box(G) box(G), is the minimum kk such that GG is the intersection graph of kk-dimensional boxes. It is clear that box(G)\le\cub(G). From the above result, it follows that for any graph GG, \cub(G)\le box(G)\ceil{\log_2\alpha}

    Boxicity and topological invariants

    Full text link
    The boxicity of a graph G=(V,E)G=(V,E) is the smallest integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1EkE=E_1 \cap \cdots \cap E_k. In the first part of this note, we prove that every graph on mm edges has boxicity O(mlogm)O(\sqrt{m \log m}), which is asymptotically best possible. We use this result to study the connection between the boxicity of graphs and their Colin de Verdi\`ere invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph GG, the boxicity of GG is at most the Colin de Verdi\`ere invariant of GG, denoted by μ(G)\mu(G). We observe that every graph GG has boxicity O(μ(G)4(logμ(G))2)O(\mu(G)^4(\log \mu(G))^2), while there are graphs GG with boxicity Ω(μ(G)logμ(G))\Omega(\mu(G)\sqrt{\log \mu(G)}). In the second part of this note, we focus on graphs embeddable on a surface of Euler genus gg. We prove that these graphs have boxicity O(glogg)O(\sqrt{g}\log g), while some of these graphs have boxicity Ω(glogg)\Omega(\sqrt{g \log g}). This improves the previously best known upper and lower bounds. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces.Comment: 6 page

    Boxicity of Line Graphs

    Get PDF
    Boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R^k. In this paper, we show that for a line graph G of a multigraph, box(G) <= 2\Delta(\lceil log_2(log_2(\Delta)) \rceil + 3) + 1, where \Delta denotes the maximum degree of G. Since \Delta <= 2(\chi - 1), for any line graph G with chromatic number \chi, box(G) = O(\chi log_2(log_2(\chi))). For the d-dimensional hypercube H_d, we prove that box(H_d) >= (\lceil log_2(log_2(d)) \rceil + 1)/2. The question of finding a non-trivial lower bound for box(H_d) was left open by Chandran and Sivadasan in [L. Sunil Chandran and Naveen Sivadasan. The cubicity of Hypercube Graphs. Discrete Mathematics, 308(23):5795-5800, 2008]. The above results are consequences of bounds that we obtain for the boxicity of fully subdivided graphs (a graph which can be obtained by subdividing every edge of a graph exactly once).Comment: 14 page
    corecore