239 research outputs found

    On the Core of a Unicyclic Graph

    Full text link
    A set S is independent in a graph G if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number alpha(G) is the cardinality of a maximum independent set, while mu(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n-1 = alpha(G) + mu(G), then core(G) coincides with the union of cores of all trees in G-C.Comment: 8 pages, 5 figure

    Computing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs

    Full text link
    Let alpha(G) denote the maximum size of an independent set of vertices and mu(G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is perfect. If alpha(G) + mu(G) equals the number of vertices of G, then it is called a Konig-Egervary graph. A graph is unicyclic if it has a unique cycle. In 2010, Bartha conjectured that a unique perfect matching, if it exists, can be found in O(m) time, where m is the number of edges. In this paper we validate this conjecture for Konig-Egervary graphs and unicylic graphs. We propose a variation of Karp-Sipser leaf-removal algorithm (Karp and Spiser, 1981), which ends with an empty graph if and only if the original graph is a Konig-Egervary graph with a unique perfect matching obtained as an output as well. We also show that a unicyclic non-bipartite graph G may have at most one perfect matching, and this is the case where G is a Konig-Egervary graph.Comment: 10 pages, 5 figure

    Problems on Matchings and Independent Sets of a Graph

    Full text link
    Let GG be a finite simple graph. For XV(G)X \subset V(G), the difference of XX, d(X):=XN(X)d(X) := |X| - |N (X)| where N(X)N(X) is the neighborhood of XX and max{d(X):XV(G)}\max \, \{d(X):X\subset V(G)\} is called the critical difference of GG. XX is called a critical set if d(X)d(X) equals the critical difference and ker(G)(G) is the intersection of all critical sets. It is known that ker(G)(G) is an independent (vertex) set of GG. diadem(G)(G) is the union of all critical independent sets. An independent set SS is an inclusion minimal set with d(S)>0d(S) > 0 if no proper subset of SS has positive difference. A graph GG is called K\"onig-Egerv\'ary if the sum of its independence number (α(G)\alpha (G)) and matching number (μ(G)\mu (G)) equals V(G)|V(G)|. It is known that bipartite graphs are K\"onig-Egerv\'ary. In this paper, we study independent sets with positive difference for which every proper subset has a smaller difference and prove a result conjectured by Levit and Mandrescu in 2013. The conjecture states that for any graph, the number of inclusion minimal sets SS with d(S)>0d(S) > 0 is at least the critical difference of the graph. We also give a short proof of the inequality |ker(G)+(G)| + |diadem(G)2α(G)(G)| \le 2\alpha (G) (proved by Short in 2016). A characterization of unicyclic non-K\"onig-Egerv\'ary graphs is also presented and a conjecture which states that for such a graph GG, the critical difference equals α(G)μ(G)\alpha (G) - \mu (G), is proved. We also make an observation about kerG)G) using Edmonds-Gallai Structure Theorem as a concluding remark.Comment: 18 pages, 2 figure

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur

    On rigidity, orientability and cores of random graphs with sliders

    Get PDF
    Suppose that you add rigid bars between points in the plane, and suppose that a constant fraction qq of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph GG(n,c/n)G \in \mathcal{G}(n,c/n) the threshold value of cc for the appearance of a linear-sized rigid component as a function of qq, generalizing results of Kasiviswanathan et al. We show that this appearance of a giant component undergoes a continuous transition for q1/2q \leq 1/2 and a discontinuous transition for q>1/2q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1- and 2-orientability, of cores interpolating between 2-core and 3-core, and of extended cores interpolating between 2+1-core and 3+2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of Kasiviswanathan et al. about the size of the 3+2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest.Comment: 32 pages, 1 figur

    Sampling Random Colorings of Sparse Random Graphs

    Get PDF
    We study the mixing properties of the single-site Markov chain known as the Glauber dynamics for sampling kk-colorings of a sparse random graph G(n,d/n)G(n,d/n) for constant dd. The best known rapid mixing results for general graphs are in terms of the maximum degree Δ\Delta of the input graph GG and hold when k>11Δ/6k>11\Delta/6 for all GG. Improved results hold when k>αΔk>\alpha\Delta for graphs with girth 5\geq 5 and Δ\Delta sufficiently large where α1.7632\alpha\approx 1.7632\ldots is the root of α=exp(1/α)\alpha=\exp(1/\alpha); further improvements on the constant α\alpha hold with stronger girth and maximum degree assumptions. For sparse random graphs the maximum degree is a function of nn and the goal is to obtain results in terms of the expected degree dd. The following rapid mixing results for G(n,d/n)G(n,d/n) hold with high probability over the choice of the random graph for sufficiently large constant~dd. Mossel and Sly (2009) proved rapid mixing for constant kk, and Efthymiou (2014) improved this to kk linear in~dd. The condition was improved to k>3dk>3d by Yin and Zhang (2016) using non-MCMC methods. Here we prove rapid mixing when k>αdk>\alpha d where α1.7632\alpha\approx 1.7632\ldots is the same constant as above. Moreover we obtain O(n3)O(n^{3}) mixing time of the Glauber dynamics, while in previous rapid mixing results the exponent was an increasing function in dd. As in previous results for random graphs our proof analyzes an appropriately defined block dynamics to "hide" high-degree vertices. One new aspect in our improved approach is utilizing so-called local uniformity properties for the analysis of block dynamics. To analyze the "burn-in" phase we prove a concentration inequality for the number of disagreements propagating in large blocks
    corecore