5,942 research outputs found

    Pareto-Path Multi-Task Multiple Kernel Learning

    Full text link
    A traditional and intuitively appealing Multi-Task Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing amongst tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a Multi-Objective Optimization (MOO) problem, which considers the concurrent optimization of all task objectives involved in the Multi-Task Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel Support Vector Machine (SVM) MT-MKL framework, that considers an implicitly-defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving better classification performance, when compared to other similar MTL approaches.Comment: Accepted by IEEE Transactions on Neural Networks and Learning System

    Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning

    Full text link
    We show a Talagrand-type concentration inequality for Multi-Task Learning (MTL), using which we establish sharp excess risk bounds for MTL in terms of distribution- and data-dependent versions of the Local Rademacher Complexity (LRC). We also give a new bound on the LRC for norm regularized as well as strongly convex hypothesis classes, which applies not only to MTL but also to the standard i.i.d. setting. Combining both results, one can now easily derive fast-rate bounds on the excess risk for many prominent MTL methods, including---as we demonstrate---Schatten-norm, group-norm, and graph-regularized MTL. The derived bounds reflect a relationship akeen to a conservation law of asymptotic convergence rates. This very relationship allows for trading off slower rates w.r.t. the number of tasks for faster rates with respect to the number of available samples per task, when compared to the rates obtained via a traditional, global Rademacher analysis.Comment: In this version, some arguments and results (of the previous version) have been corrected, or modifie
    • …
    corecore