93 research outputs found

    An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

    Full text link
    [EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an alternative that avoids the use of sophisticated properties of divided differences that are used in already published papers about local convergence for multiple roots. We defined the local study by using a technique taking into consideration a bounding condition for the derivative of the function with i=1,2. In the case that the method uses first and second derivative in its iterative expression and i=1 in case the method only uses first derivative. Furthermore we implement a numerical analysis in the following sense. Since the radius of local convergence for high-order methods decreases with the order, we must take into account the analysis of ITS behaviour when we introduce a new iterative method. Finally, we have used these iterative methods for multiple roots for the case where the multiplicity m is unknown, so we estimate this factor by different strategies comparing the behaviour of the corresponding estimations and how this fact affect to the original method.This work was supported by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (Convocatoria Abierta 2015 fase II).Alarcon, D.; Hueso, JL.; Martínez Molada, E. (2020). An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown. International Journal of Computer Mathematics. 97(1-2):312-329. https://doi.org/10.1080/00207160.2019.1589460S312329971-2Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8McNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Ortega, J. M. (1974). Solution of Equations in Euclidean and Banach Spaces (A. M. Ostrowski). SIAM Review, 16(4), 564-564. doi:10.1137/1016102Osada, N. (1994). An optimal multiple root-finding method of order three. Journal of Computational and Applied Mathematics, 51(1), 131-133. doi:10.1016/0377-0427(94)00044-1Schr�der, E. (1870). Ueber unendlich viele Algorithmen zur Aufl�sung der Gleichungen. Mathematische Annalen, 2(2), 317-365. doi:10.1007/bf01444024Vander Stracten, M., & Van de Vel, H. (1992). Multiple root-finding methods. Journal of Computational and Applied Mathematics, 40(1), 105-114. doi:10.1016/0377-0427(92)90045-yZhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-

    Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

    Full text link
    [EN] The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity m > 1. An extensive convergence analysis is presented with the main theorem in order to demonstrate the optimal eighth-order convergence of the proposed scheme. Moreover, a local convergence study for the optimal fourth-order method defined by the first two steps of the new method is presented, allowing us to obtain the radius of the local convergence ball. Finally, numerical tests on some real-life problems, such as a Van der Waals equation of state, a conversion Chemical engineering problem and two standard academic test problems are presented, which confirm the theoretical results established in this paper and the efficiency of this proposed iterative method. We observed from the numerical experiments that our proposed iterative methods have good values for convergence radii. Further, they have not only faster convergence towards the desired zero of the involved function but they also have both smaller residual error and a smaller difference between two consecutive iterations than current existing techniques.This research was partially supported by Ministerio de Economia y Competitividad under grant MTM2014-52016-C2-2-P and by the project of Generalitat Valenciana Prometeo/2016/089.Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alshomrani, AS. (2019). Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence. Mathematical Problems in Engineering. 2019:1-18. https://doi.org/10.1155/2019/1427809S1182019Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Shengguo, L., Xiangke, L., & Lizhi, C. (2009). A new fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Computation, 215(3), 1288-1292. doi:10.1016/j.amc.2009.06.065Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011Zhou, X., Chen, X., & Song, Y. (2013). Families of third and fourth order methods for multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(11), 6030-6038. doi:10.1016/j.amc.2012.12.041Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Zafar, F., Cordero, A., Quratulain, R., & Torregrosa, J. R. (2017). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry, 56(7), 1884-1901. doi:10.1007/s10910-017-0813-1Geum, Y. H., Kim, Y. I., & Neta, B. (2018). Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. Journal of Computational and Applied Mathematics, 333, 131-156. doi:10.1016/j.cam.2017.10.033Geum, Y. H., Kim, Y. I., & Magreñán, Á. A. (2018). A study of dynamics via Möbius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions. Journal of Computational and Applied Mathematics, 344, 608-623. doi:10.1016/j.cam.2018.06.006Chun, C., & Neta, B. (2015). An analysis of a family of Maheshwari-based optimal eighth order methods. Applied Mathematics and Computation, 253, 294-307. doi:10.1016/j.amc.2014.12.064Thukral, R. (2013). Introduction to Higher-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Journal of Mathematics, 2013, 1-3. doi:10.1155/2013/404635Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2Bi, W., Ren, H., & Wu, Q. (2011). Convergence of the modified Halley’s method for multiple zeros under Hölder continuous derivative. Numerical Algorithms, 58(4), 497-512. doi:10.1007/s11075-011-9466-5Zhou, X., & Song, Y. (2014). Convergence radius of Osada’s method under center-Hölder continuous condition. Applied Mathematics and Computation, 243, 809-816. doi:10.1016/j.amc.2014.06.068Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Balaji, G. V., & Seader, J. D. (1995). Application of interval Newton’s method to chemical engineering problems. Reliable Computing, 1(3), 215-223. doi:10.1007/bf02385253Shacham, M. (1989). An improved memory method for the solution of a nonlinear equation. Chemical Engineering Science, 44(7), 1495-1501. doi:10.1016/0009-2509(89)80026-

    Unified Ball Convergence of Inexact Methods For Finding Zeros with Multiplicity

    Get PDF
    We present an extended ball convergence of inexact methods for approximating a zero of a nonlinear equation with multiplicity m; where m is a natural number. Many popular methods are special cases of the inexact method

    A note on "Convergence radius of Osada s method under Hölder continuous condition"

    Full text link
    [EN] In this paper we revise the proofs of the results obtained in "Convergence radius of Osada's method under Holder continuous condition"[4], because the remainder of the Taylor's expansion used for the obtainment of the local convergence radius is not correct. So we perform the complete study in order to modify the equation for getting the local convergence radius, the uniqueness radius and the error bounds. Moreover a dynamical study for the third order Osada's method is also developed. (C) 2017 Elsevier Inc. All rights reserved.Hueso, J.; Martínez Molada, E.; Gupta, D.; Cevallos-Alarcon, FA. (2018). A note on "Convergence radius of Osada s method under Hölder continuous condition". Applied Mathematics and Computation. 321:689-699. https://doi.org/10.1016/j.amc.2017.11.003S68969932

    Estudio sobre convergencia y dinámica de los métodos de Newton, Stirling y alto orden

    Get PDF
    Las matemáticas, desde el origen de esta ciencia, han estado al servicio de la sociedad tratando de dar respuesta a los problemas que surgían. Hoy en día sigue siendo así, el desarrollo de las matemáticas está ligado a la demanda de otras ciencias que necesitan dar solución a situaciones concretas y reales. La mayoría de los problemas de ciencia e ingeniería no pueden resolverse usando ecuaciones lineales, es por tanto que hay que recurrir a las ecuaciones no lineales para modelizar dichos problemas (Amat, 2008; véase también Argyros y Magreñán, 2017, 2018), entre otros. El conflicto que presentan las ecuaciones no lineales es que solo en unos pocos casos es posible encontrar una solución única, por tanto, en la mayor parte de los casos, para resolverlas hay que recurrir a los métodos iterativos. Los métodos iterativos generan, a partir de un punto inicial, una sucesión que puede converger o no a la solución

    Nonlocal planar Schrödinger-Poisson systems in the fractional Sobolev limiting case

    Get PDF
    We study the nonlinear Schrodinger equation for the s-fractional p-Laplacian strongly coupled with the Poisson equation in dimension two and with p =2s, which is the limiting case for the embedding of the fractional Sobolev space Ws,p(R2). We prove existence of solutions by means of a variational approximating procedure for an auxiliary Choquard equation in which the uniformly approximated sign-changing logarithmic kernel competes with the exponential nonlinearity. Qualitative properties of solutions such as symmetry and decay are also established by exploiting a suitable moving planes technique

    Nonlocal planar Schr\"odinger-Poisson systems in the fractional Sobolev limiting case

    Full text link
    We study the nonlinear Schr\"odinger equation for the ss-fractional pp-Laplacian strongly coupled with the Poisson equation in dimension two and with p=2sp=\frac2s, which is the limiting case for the embedding of the fractional Sobolev space Ws,p(R2)W^{s,p}(\mathbb{R}^2). We prove existence of solutions by means of a variational approximating procedure for an auxiliary Choquard equation in which the uniformly approximated sign-changing logarithmic kernel competes with the exponential nonlinearity. Qualitative properties of solutions such as symmetry and decay are also established by exploiting a suitable moving planes technique

    Absorption de l'eau et des nutriments par les racines des plantes : modélisation, analyse et simulation

    Get PDF
    In the context of the development of sustainable agriculture aiming at preserving natural resources and ecosystems, it is necessary to improve our understanding of underground processes and interactions between soil and plant roots.In this thesis, we use mathematical and numerical tools to develop explicit mechanistic models of soil water and solute movement accounting for root water and nutrient uptake and governed by nonlinear partial differential equations. An emphasis is put on resolving the geometry of the root system as well as small scale processes occurring in the rhizosphere, which play a major role in plant root uptake.The first study is dedicated to the mathematical analysis of a model of phosphorus (P) uptake by plant roots. The evolution of the concentration of P in the soil solution is governed by a convection-diffusion equation with a nonlinear boundary condition at the root surface, which is included as a boundary of the soil domain. A shape optimization problem is formulated that aims at finding root shapes maximizing P uptake.The second part of this thesis shows how we can take advantage of the recent advances of scientific computing in the field of unstructured mesh adaptation and parallel computing to develop numerical models of soil water and solute movement with root water and nutrient uptake at the plant scale while taking into account local processes at the single root scale.Dans le contexte du développement d'une agriculture durable visant à préserver les ressources naturelles et les écosystèmes, il s'avère nécessaire d'approfondir notre compréhension des processus souterrains et des interactions entre le sol et les racines des plantes.Dans cette thèse, on utilise des outils mathématiques et numériques pour développer des modèles mécanistiques explicites du mouvement de l'eau et des nutriments dans le sol et de l'absorption racinaire, gouvernés par des équations aux dérivées partielles non linéaires. Un accent est mis sur la prise en compte explicite de la géométrie du système racinaire et des processus à petite échelle survenant dans la rhizosphère, qui jouent un rôle majeur dans l'absorption racinaire.La première étude est dédiée à l'analyse mathématique d'un modèle d'absorption du phosphore (P) par les racines des plantes. L'évolution de la concentration de P dans la solution du sol est gouvernée par une équation de convection-diffusion avec une condition aux limites non linéaire à la surface de la racine, que l'on considère ici comme un bord du domaine du sol. On formule ensuite un problème d'optimisation de forme visant à trouver les formes racinaires qui maximisent l'absorption de P.La seconde partie de cette thèse montre comment on peut tirer avantage des récents progrès du calcul scientifique dans le domaine de l'adaptation de maillage non structuré et du calcul parallèle afin de développer des modèles numériques du mouvement de l'eau et des solutés et de l'absorption racinaire à l'échelle de la plante, tout en prenant en compte les phénomènes locaux survenant à l'échelle de la racine unique
    corecore