60 research outputs found

    On the Galilean invariance of some dispersive wave equations

    Get PDF
    Surface water waves in ideal fluids have been typically modeled by asymptotic approximations of the full Euler equations. Some of these simplified models lose relevant properties of the full water wave problem. One of them is the Galilean symmetry, which is not present in important models such as the BBM equation and the Peregrine (Classical Boussinesq) system. In this paper we propose a mechanism to modify the above mentioned classical models and derive new, Galilean invariant models. We present some properties of the new equations, with special emphasis on the computation and interaction of their solitary-wave solutions. The comparison with full Euler solutions shows the relevance of the preservation of Galilean invariance for the description of water waves.Comment: 29 pages, 13 figures, 2 tables, 71 references. Other author papers can be downloaded at http://www.denys-dutykh.com

    Generation of two-dimensional water waves by moving bottom disturbances

    Get PDF
    We investigate the potential and limitations of the wave generation by disturbances moving at the bottom. More precisely, we assume that the wavemaker is composed of an underwater object of a given shape which can be displaced according to a prescribed trajectory. We address the practical question of computing the wavemaker shape and trajectory generating a wave with prescribed characteristics. For the sake of simplicity we model the hydrodynamics by a generalized forced Benjamin-Bona-Mahony (BBM) equation. This practical problem is reformulated as a constrained nonlinear optimization problem. Additional constraints are imposed in order to fulfill various practical design requirements. Finally, we present some numerical results in order to demonstrate the feasibility and performance of the proposed methodology.Comment: 21 pages, 7 figures, 1 table, 69 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation

    Get PDF
    This paper aims to obtain exact and numerical solutions of the nonlinear Benjamin Bona Mahony-Burgers (BBM-Burgers) equation. Here, we propose the modi ed Kudryashov method for getting the exact traveling wave solutions of BBM-Burgers equation and a septic B-spline collocation nite element method for numerical investigations. The numerical method is validated by studying solitary wave motion. Linear stability analysis of the numerical scheme is done with Fourier method based on von-Neumann theory. To show suitability and robustness of the new numerical algorithm, error norms L2, L1 and three invariants I1; I2 and I3 are calculated and obtained results are given both numerically and graphically. The obtained results state that our exact and numerical schemes ensure evident and they are penetrative mathematical instruments for solving nonlinear evolution equation

    The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains

    Get PDF
    The aim of this paper is to introduce a new numerical method for solving the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation. This method is combination of group preserving scheme (GPS) with radial basis functions (RBFs), which takes advantage of two powerful methods, one as geometric numerical integration method and the other meshless method. Thus, we introduce this method as the Lie-group method based on radial basis functions (LG–RBFs). In this method, we use Kansas approach to approximate the spatial derivatives and then we apply GPS method to approximate first-order time derivative. One of the important advantages of the developed method is that it can be applied to problems on arbitrary geometry with high dimensions. To demonstrate this point, we solve nonlinear GBBMB equation on various geometric domains in one, two and three dimension spaces. The results of numerical experiments are compared with analytical solutions and the method presented in Dehghan et al. (2014) to confirm the accuracy and efficiency of the presented method

    Artificial boundary conditions for the linearized Benjamin-Bona-Mahony equation

    Get PDF
    International audienceWe consider various approximations of artificial boundary conditions for linearized Benjamin-Bona-Mahoney equation. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we derive explicit transparent boundary conditions both continuous and discrete for the linearized BBM equation. The equation is discretized with the Crank Nicolson time discretization scheme and we focus on the difference between the upwind and the centered discretization of the convection term. We use these boundary conditions to compute solutions with compact support in the computational domain and also in the case of an incoming plane wave which is an exact solution of the linearized BBM equation. We prove consistency, stability and convergence of the numerical scheme and provide many numerical experiments to show the efficiency of our tranparent boundary conditions

    Galerkin finite element solution for benjamin-bona-mahony-burgers equation with cubic b-splines

    Get PDF
    In this article, we study solitary-wave solutions of the nonlinear Benjamin–Bona–Mahony– Burgers(BBM–Burgers) equation based on a lumped Galerkin technique using cubic Bspline finite elements for the spatial approximation. The existence and uniqueness of solutions of the Galerkin version of the solutions have been established. An accuracy analysis of the Galerkin finite element scheme for the spatial approximation has been well studied. The proposed scheme is carried out for four test problems including dispersion of single solitary wave, interaction of two, three solitary waves and development of an undular bore. Then we propose a full discrete scheme for the resulting IVP. Von Neumann theory is used to establish stability analysis of the full discrete numerical algorithm. To display applicability and durableness of the new scheme, error norms L2, L∞ and three invariants I1, I2 and I3 are computed and the acquired results are demonstrated both numerically and graphically. The obtained results specify that our new scheme ensures an apparent and an operative mathematical instrument for solving nonlinear evolution equation

    Numerical Analysis of a Linear-Implicit Average Scheme for Generalized Benjamin-Bona-Mahony-Burgers Equation

    Get PDF
    A linear-implicit finite difference scheme is given for the initial-boundary problem of GBBMBurgers equation, which is convergent and unconditionally stable. The unique solvability of numerical solutions is shown. A priori estimate and second-order convergence of the finite difference approximate solution are discussed using energy method. Numerical results demonstrate that the scheme is efficient and accurate

    Finite volume methods for unidirectional dispersive wave models

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves and their various interactions.Comment: 25 pages, 12 figures, 51 references. Other authors papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
    • 

    corecore