496 research outputs found

    Path Data in Marketing: An Integrative Framework and Prospectus for Model Building

    Get PDF
    Many data sets, from different and seemingly unrelated marketing domains, all involve paths—records of consumers\u27 movements in a spatial configuration. Path data contain valuable information for marketing researchers because they describe how consumers interact with their environment and make dynamic choices. As data collection technologies improve and researchers continue to ask deeper questions about consumers\u27 motivations and behaviors, path data sets will become more common and will play a more central role in marketing research. To guide future research in this area, we review the previous literature, propose a formal definition of a path (in a marketing context), and derive a unifying framework that allows us to classify different kinds of paths. We identify and discuss two primary dimensions (characteristics of the spatial configuration and the agent) as well as six underlying subdimensions. Based on this framework, we cover a range of important operational issues that should be taken into account as researchers begin to build formal models of path-related phenomena. We close with a brief look into the future of path-based models, and a call for researchers to address some of these emerging issues

    Layered graph approaches for combinatorial optimization problems

    Get PDF
    Extending the concept of time-space networks, layered graphs associate information about one or multiple resource state values with nodes and arcs. While integer programming formulations based on them allow to model complex problems comparably easy, their large size makes them hard to solve for non-trivial instances. We detail and classify layered graph modeling techniques that have been used in the (recent) scientific literature and review methods to successfully solve the resulting large-scale, extended formulations. Modeling guidelines and important observations concerning the solution of layered graph formulations by decomposition methods are given together with several future research directions

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    A matheuristic approach for the Pollution-Routing Problem

    Full text link
    This paper deals with the Pollution-Routing Problem (PRP), a Vehicle Routing Problem (VRP) with environmental considerations, recently introduced in the literature by [Bektas and Laporte (2011), Transport. Res. B-Meth. 45 (8), 1232-1250]. The objective is to minimize operational and environmental costs while respecting capacity constraints and service time windows. Costs are based on driver wages and fuel consumption, which depends on many factors, such as travel distance and vehicle load. The vehicle speeds are considered as decision variables. They complement routing decisions, impacting the total cost, the travel time between locations, and thus the set of feasible routes. We propose a method which combines a local search-based metaheuristic with an integer programming approach over a set covering formulation and a recursive speed-optimization algorithm. This hybridization enables to integrate more tightly route and speed decisions. Moreover, two other "green" VRP variants, the Fuel Consumption VRP (FCVRP) and the Energy Minimizing VRP (EMVRP), are addressed. The proposed method compares very favorably with previous algorithms from the literature and many new improved solutions are reported.Comment: Working Paper -- UFPB, 26 page

    A Heuristic Method for Task Selection in Persistent ISR Missions Using Autonomous Unmanned Aerial Vehicles

    Get PDF
    The Persistent Intelligence, Surveillance, and Reconnaissance (PISR) problem seeks to provide timely collection and delivery of data from prioritized ISR tasks using an autonomous Unmanned Aerial Vehicle (UAV). In the literature, PISR is classified as a type of Vehicle Routing Problem (VRP), often called by other names such as persistent monitoring, persistent surveillance, and patrolling. The objective of PISR is to minimize the weighted revisit time to each task (called weighted latency) using an optimal task selection algorithm. In this research, we utilize the average weighted latency as our performance metric and investigate a method for task selection called the Maximal Distance Discounted and Weighted Revisit Period (MD2WRP) utility function. The MD2WRP function is a heuristic method of task selection that uses n+1 parameters, where n is the number of PISR tasks. We develop a two-step optimization method for the MD2WRP parameters to deliver optimal latency performance for any given task configuration, which accommodates both single and multi-vehicle scenarios. To validate our optimization method, we compare the performance of MD2WRP to common Traveling Salesman Problem (TSP) methods for PISR using different task configurations. We find that the optimized MD2WRP function is competitive with the TSP methods, and that MD2WRP often results in steady-state task visit sequences that are equivalent to the TSP solution for a single vehicle. We also compare MD2WRP to other utility methods from the literature, finding thatMD2WRP performs on par with or better than these other methods even when optimizing only one of its n + 1 parameters. To address real-world operational factors, we test MD2WRP with Dubins constraints, no-y zones in the operational area, return-to-base requirements, and the addition and removal of vehicles and tasks mid-mission. For each operational factor, we demonstrate its effect on PISR task selections using MD2WRP and how MD2WRP needs to be modified, if at all, to compensate. Finally, we make practical suggestions about implementing MD2WRP for flight testing, outline potential areas for future study, and offer recommendations about the conduct of PISR missions in general

    Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand

    Get PDF
    This dissertation contains three essays related to shipment consolidation scheduling and decision making in the presence of flexible demand. The first essay is presented in Section 1. This essay introduces a new mathematical model for shipment consolidation scheduling for a two-echelon supply chain. The problem addresses shipment coordination and consolidation decisions that are made by a manufacturer who provides inventory replenishments to multiple downstream distribution centers. Unlike previous studies, the consolidation activities in this problem are not restricted to specific policies such as aggregation of shipments at regular times or consolidating when a predetermined quantity has accumulated. Rather, we consider the construction of a detailed shipment consolidation schedule over a planning horizon. We develop a mixed-integer quadratic optimization model to identify the shipment consolidation schedule that minimizes total cost. A genetic algorithm is developed to handle large problem instances. The other two essays explore the concept of flexible demand. In Section 2, we introduce a new variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat visits (VRP-FRV). This problem considers a set of customers at certain locations with certain maximum inter-visit time requirements. However, they are flexible in their visit times. The VRP-FRV has several real-world applications. One scenario is that of caretakers who provide service to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or more times per day. Elderly people differ in their requirements and the minimum frequency at which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol routing problem where the customers are various locations in the city that require frequent observations. Such locations could include known high-crime areas, high-profile residences, and/or safe houses. We develop a math model to minimize the total number of vehicles needed to cover the customer demands and determine the optimal customer visit schedules and vehicle routes. A heuristic method is developed to handle large problem instances. In the third study, presented in Section 3, we consider a single-item cyclic coordinated order fulfillment problem with batch supplies and flexible demands. The system in this study consists of multiple suppliers who each deliver a single item to a central node from which multiple demanders are then replenished. Importantly, demand is flexible and is a control action that the decision maker applies to optimize the system. The objective is to minimize total system cost subject to several operational constraints. The decisions include the timing and sizes of batches delivered by the suppliers to the central node and the timing and amounts by which demanders are replenished. We develop an integer programing model, provide several theoretical insights related to the model, and solve the math model for different problem sizes
    • …
    corecore